Nanomechanical properties of thermal arc sprayed coating using continuous stiffness measurement and artificial neural network
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Huen, Wai Yeong | - |
dc.contributor.author | Lee, Hyuk | - |
dc.contributor.author | Vimonsatit, Vanissorn | - |
dc.contributor.author | Mendis, Priyan | - |
dc.contributor.author | Lee, Han-Seung | - |
dc.date.accessioned | 2021-06-22T10:02:33Z | - |
dc.date.available | 2021-06-22T10:02:33Z | - |
dc.date.issued | 2019-05 | - |
dc.identifier.issn | 0257-8972 | - |
dc.identifier.issn | 1879-3347 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/2915 | - |
dc.description.abstract | Instrumented indentation continuous stiffness measurement (CSM) method is applied to investigate the nano mechanical properties of the aluminum and zinc arc thermal spray aluminum coating. This study shows that individual component within a multi-phase material can be differentiated through the stiffness characteristic transition in a single indentation. Using this approach, the nanomechanical properties of the individual phases can be isolated and quantified using statistical deconvolution method. This paper further demonstrates that through the use of computational simulation and artificial neural network, the nanomechanical properties can be predicted based on experimental nanoindentation loading and unloading, where the load-unload responses of an individual material phase can be replicated once the nanomechanical properties are made known. This study shows that CSM method is able to predict the material's elasticity and plasticity properties, including elastic modulus, hardness, yield strength and work hardening, of individual aluminum and zinc components of the thermal arc spray coating. | - |
dc.format.extent | 11 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Elsevier BV | - |
dc.title | Nanomechanical properties of thermal arc sprayed coating using continuous stiffness measurement and artificial neural network | - |
dc.type | Article | - |
dc.publisher.location | 스위스 | - |
dc.identifier.doi | 10.1016/j.surfcoat.2019.03.041 | - |
dc.identifier.scopusid | 2-s2.0-85063481521 | - |
dc.identifier.wosid | 000465366400031 | - |
dc.identifier.bibliographicCitation | Surface and Coatings Technology, v.366, pp 266 - 276 | - |
dc.citation.title | Surface and Coatings Technology | - |
dc.citation.volume | 366 | - |
dc.citation.startPage | 266 | - |
dc.citation.endPage | 276 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | sci | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Coatings & Films | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.subject.keywordPlus | MECHANICAL-PROPERTIES | - |
dc.subject.keywordPlus | FRACTURE-TOUGHNESS | - |
dc.subject.keywordPlus | ELASTIC-MODULUS | - |
dc.subject.keywordPlus | THIN-FILMS | - |
dc.subject.keywordPlus | SURFACE-ROUGHNESS | - |
dc.subject.keywordPlus | STRAIN-RATE | - |
dc.subject.keywordPlus | PILE-UP | - |
dc.subject.keywordPlus | NANOINDENTATION | - |
dc.subject.keywordPlus | INDENTATION | - |
dc.subject.keywordPlus | HARDNESS | - |
dc.subject.keywordAuthor | Nanoindentation | - |
dc.subject.keywordAuthor | Continuous stiffness measurement | - |
dc.subject.keywordAuthor | Nanomechanical properties | - |
dc.subject.keywordAuthor | Artificial neural network | - |
dc.identifier.url | https://www.sciencedirect.com/science/article/pii/S0257897219303093?via%3Dihub | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.