Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Nanomechanical properties of thermal arc sprayed coating using continuous stiffness measurement and artificial neural network

Full metadata record
DC Field Value Language
dc.contributor.authorHuen, Wai Yeong-
dc.contributor.authorLee, Hyuk-
dc.contributor.authorVimonsatit, Vanissorn-
dc.contributor.authorMendis, Priyan-
dc.contributor.authorLee, Han-Seung-
dc.date.accessioned2021-06-22T10:02:33Z-
dc.date.available2021-06-22T10:02:33Z-
dc.date.issued2019-05-
dc.identifier.issn0257-8972-
dc.identifier.issn1879-3347-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/2915-
dc.description.abstractInstrumented indentation continuous stiffness measurement (CSM) method is applied to investigate the nano mechanical properties of the aluminum and zinc arc thermal spray aluminum coating. This study shows that individual component within a multi-phase material can be differentiated through the stiffness characteristic transition in a single indentation. Using this approach, the nanomechanical properties of the individual phases can be isolated and quantified using statistical deconvolution method. This paper further demonstrates that through the use of computational simulation and artificial neural network, the nanomechanical properties can be predicted based on experimental nanoindentation loading and unloading, where the load-unload responses of an individual material phase can be replicated once the nanomechanical properties are made known. This study shows that CSM method is able to predict the material's elasticity and plasticity properties, including elastic modulus, hardness, yield strength and work hardening, of individual aluminum and zinc components of the thermal arc spray coating.-
dc.format.extent11-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier BV-
dc.titleNanomechanical properties of thermal arc sprayed coating using continuous stiffness measurement and artificial neural network-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.1016/j.surfcoat.2019.03.041-
dc.identifier.scopusid2-s2.0-85063481521-
dc.identifier.wosid000465366400031-
dc.identifier.bibliographicCitationSurface and Coatings Technology, v.366, pp 266 - 276-
dc.citation.titleSurface and Coatings Technology-
dc.citation.volume366-
dc.citation.startPage266-
dc.citation.endPage276-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusFRACTURE-TOUGHNESS-
dc.subject.keywordPlusELASTIC-MODULUS-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusSURFACE-ROUGHNESS-
dc.subject.keywordPlusSTRAIN-RATE-
dc.subject.keywordPlusPILE-UP-
dc.subject.keywordPlusNANOINDENTATION-
dc.subject.keywordPlusINDENTATION-
dc.subject.keywordPlusHARDNESS-
dc.subject.keywordAuthorNanoindentation-
dc.subject.keywordAuthorContinuous stiffness measurement-
dc.subject.keywordAuthorNanomechanical properties-
dc.subject.keywordAuthorArtificial neural network-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0257897219303093?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > MAJOR IN ARCHITECTURAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Han Seung photo

Lee, Han Seung
ERICA 공학대학 (MAJOR IN ARCHITECTURAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE