Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

DIGTOBI: A recommendation system for Digg articles using probabilistic modeling

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Younghoon-
dc.contributor.authorPark, Yoonjae-
dc.contributor.authorShim, Kyuseok-
dc.date.accessioned2021-06-23T04:23:46Z-
dc.date.available2021-06-23T04:23:46Z-
dc.date.issued2013-05-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/29268-
dc.description.abstractDigg is a social news website that lets people submit articles to share their favorite web pages (e.g. blog postings or news articles) and vote the articles posted by others. Digg service currently lists the articles in the front page by popularity without considering each user's preference to the topics in the articles. Helping users to find the most interesting Digg articles tailored to each user's own interests will be very use-ful, but it is not an easy task to classify the articles according to their topics in order to recommend the articles differently to each user. In this paper, we propose DIGTOBI, a personalized recommendation system for Digg articles using a novel probabilistic modeling. Our model considers the relevant articles with low Digg scores important as well. We show that our model can handle both warm-start and cold-start scenarios seamlessly through a single model. We next propose an EM algorithm to learn the parameters of our probabilistic model. Our performance study with Digg data confirms the effectiveness of DIGTOBI compared to the traditional recommendations algorithms. Copyright is held by the International World Wide Web Conference Committee (IW3C2).-
dc.format.extent11-
dc.language영어-
dc.language.isoENG-
dc.publisherACM-
dc.titleDIGTOBI: A recommendation system for Digg articles using probabilistic modeling-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1145/2488388.2488449-
dc.identifier.scopusid2-s2.0-84891824303-
dc.identifier.bibliographicCitationWWW 2013 - Proceedings of the 22nd International Conference on World Wide Web, pp 691 - 701-
dc.citation.titleWWW 2013 - Proceedings of the 22nd International Conference on World Wide Web-
dc.citation.startPage691-
dc.citation.endPage701-
dc.type.docTypeConference Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusDigg article recommendation-
dc.subject.keywordPlusExpectation Maximization-
dc.subject.keywordPlusPerformance study-
dc.subject.keywordPlusPersonalized recommendation systems-
dc.subject.keywordPlusProbabilistic latent semantic indexing-
dc.subject.keywordPlusProbabilistic modeling-
dc.subject.keywordPlusTopic Modeling-
dc.subject.keywordPlusUser's preferences-
dc.subject.keywordPlusAlgorithms-
dc.subject.keywordPlusCollaborative filtering-
dc.subject.keywordPlusWebsites-
dc.subject.keywordPlusRecommender systems-
dc.subject.keywordAuthorCollaborative filtering-
dc.subject.keywordAuthorDigg article recommendation-
dc.subject.keywordAuthorExpectation-maximization-
dc.subject.keywordAuthorProbabilistic latent semantic indexing-
dc.subject.keywordAuthorTopic modeling-
dc.identifier.urlhttps://dl.acm.org/doi/abs/10.1145/2488388.2488449?-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF COMPUTING > DEPARTMENT OF ARTIFICIAL INTELLIGENCE > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Young hoon photo

Kim, Young hoon
ERICA 소프트웨어융합대학 (DEPARTMENT OF ARTIFICIAL INTELLIGENCE)
Read more

Altmetrics

Total Views & Downloads

BROWSE