Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Visual saliency based on selective integration of feature maps in frequency domain

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Ki tae-
dc.contributor.authorLee, Jeong ho-
dc.contributor.authorMoon, Young shik-
dc.date.accessioned2021-06-23T05:23:33Z-
dc.date.available2021-06-23T05:23:33Z-
dc.date.issued2013-01-
dc.identifier.issn0747-668X-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/30525-
dc.description.abstractIn this paper, an automatic method for extracting visual saliency based on selective integration of feature maps in frequency domain is proposed. Feature maps are calculated by measuring the Bayes spectral entropy. In order to extract visual saliency effectively, feature maps are first generated from three images separated into Y, Cb, Cr channels, respectively. Then, by selectively integrating feature maps, visual saliency is finally extracted. Experimental results have shown that the proposed method obtains good performance of visual saliency under various environments containing multiple objects and cluttered backgrounds in natural images. © 2013 IEEE.-
dc.format.extent2-
dc.language영어-
dc.language.isoENG-
dc.titleVisual saliency based on selective integration of feature maps in frequency domain-
dc.typeArticle-
dc.identifier.doi10.1109/ICCE.2013.6486787-
dc.identifier.scopusid2-s2.0-84876347021-
dc.identifier.wosid000318797800019-
dc.identifier.bibliographicCitationDigest of Technical Papers - IEEE International Conference on Consumer Electronics, pp 43 - 44-
dc.citation.titleDigest of Technical Papers - IEEE International Conference on Consumer Electronics-
dc.citation.startPage43-
dc.citation.endPage44-
dc.type.docTypeConference Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassother-
dc.subject.keywordPlusAutomatic method-
dc.subject.keywordPlusCluttered backgrounds-
dc.subject.keywordPlusFeature map-
dc.subject.keywordPlusFrequency domains-
dc.subject.keywordPlusMultiple objects-
dc.subject.keywordPlusNatural images-
dc.subject.keywordPlusSpectral entropy-
dc.subject.keywordPlusVisual saliency-
dc.subject.keywordPlusConsumer electronics-
dc.subject.keywordPlusFrequency domain analysis-
dc.subject.keywordPlusVisualization-
dc.subject.keywordAuthorVisualization-
dc.subject.keywordAuthorAutomatic method-
dc.subject.keywordAuthorMultiple objects-
dc.subject.keywordAuthorSpectral entropy-
dc.subject.keywordAuthorCluttered backgrounds-
dc.subject.keywordAuthorFeature map-
dc.subject.keywordAuthorVisual saliency-
dc.subject.keywordAuthorFrequency domains-
dc.subject.keywordAuthorConsumer electronics-
dc.subject.keywordAuthorFrequency domain analysis-
dc.subject.keywordAuthorNatural images-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/6486787/-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF COMPUTING > SCHOOL OF COMPUTER SCIENCE > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE