Interval type-2 fuzzy C-means using multiple kernels
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Abhishek, | - |
dc.contributor.author | Jeph, Anubhav | - |
dc.contributor.author | Rhee, Frank chung hoon | - |
dc.date.accessioned | 2021-06-23T05:23:50Z | - |
dc.date.available | 2021-06-23T05:23:50Z | - |
dc.date.issued | 2013-07 | - |
dc.identifier.issn | 1098-7584 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/30534 | - |
dc.description.abstract | In this paper, we propose an adaptive hybrid clustering method, where fuzzy C-means with multiple kernels (FCM-MK) has been combined with interval type-2 fuzzy C-means. In the proposed method, multiple Gaussian kernels are used. The resolution-specific weight, the membership values, and the cluster prototypes are decided in situ. In the calculation of the cluster prototypes, uncertainty associated with the fuzzifier parameter m is considered. In doing so, a pattern set is extended to interval type-2 fuzzy sets using two fuzzifiers m1 and m2, creating a footprint of uncertainty (FOU) for the fuzzifier m. This is followed by type reduction and defuzzification for obtaining the final location of the prototypes. Various experimental results are shown to validate the effectiveness of the proposed clustering method. © 2013 IEEE. | - |
dc.format.extent | 8 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | IEEE | - |
dc.title | Interval type-2 fuzzy C-means using multiple kernels | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1109/FUZZ-IEEE.2013.6622306 | - |
dc.identifier.scopusid | 2-s2.0-84887851094 | - |
dc.identifier.wosid | 000335342800008 | - |
dc.identifier.bibliographicCitation | IEEE International Conference on Fuzzy Systems, pp 1 - 8 | - |
dc.citation.title | IEEE International Conference on Fuzzy Systems | - |
dc.citation.startPage | 1 | - |
dc.citation.endPage | 8 | - |
dc.type.docType | Conference Paper | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Artificial Intelligence | - |
dc.relation.journalWebOfScienceCategory | Engineering, Electrical & Electronic | - |
dc.subject.keywordAuthor | Footprint of uncertainty | - |
dc.subject.keywordAuthor | Fuzzy c-means (FCM) | - |
dc.subject.keywordAuthor | Fuzzy clustering | - |
dc.subject.keywordAuthor | Multiple Gaussian kernels | - |
dc.subject.keywordAuthor | Type-2 fuzzy sets | - |
dc.identifier.url | https://ieeexplore.ieee.org/document/6622306 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.