Recalcitrant organic matter removal from textile wastewater by an aerobic cell-immobilized pellet column
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Moonil | - |
dc.contributor.author | Han, Dukkyu | - |
dc.contributor.author | Cui, Fenghao | - |
dc.contributor.author | Bae, Wookeun | - |
dc.date.accessioned | 2021-06-23T05:43:58Z | - |
dc.date.available | 2021-06-23T05:43:58Z | - |
dc.date.issued | 2013-05 | - |
dc.identifier.issn | 0273-1223 | - |
dc.identifier.issn | 1996-9732 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/30958 | - |
dc.description.abstract | The treatment of textile wastewater is difficult because of its recalcitrant organic content. The biological removal of recalcitrant organics requires a long retention time for microbial growth. Activated sludge was immobilized in a polyethylene glycol pellet to allow for sufficient sludge retention time. The pellets were filled in an aerobic cell-immobilized pellet column (CIPC) reactor in order to investigate the removal of recalcitrant organics from textile wastewater. A textile wastewater effluent treated by a conventional activated sludge reactor was used as a target wastewater. The chemical oxygen demand (COD) removal efficiency of the aerobic CIPC reactor at various empty bed contact times was in the range of 42.2-60.5%. Half of the input COD was removed in the lower part (bottom 25% of the reactor volume) of the reactor when the organic loading rate was less than 1.5 kg COD/(m(3).d). About 15-30% of the input COD was removed in the remaining part of the column reactor. The COD removed in this region was limitedly biodegradable. The biodegradation of recalcitrant organics could be carried out by the interactional functions of the various bacteria consortia by using a cell-immobilization process. The CIPC process could effectively treat textile wastewater using a short retention time because the microorganisms that degrade limitedly biodegradable organics were dominant in the reactor. | - |
dc.format.extent | 8 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | IWA PUBLISHING | - |
dc.title | Recalcitrant organic matter removal from textile wastewater by an aerobic cell-immobilized pellet column | - |
dc.type | Article | - |
dc.publisher.location | 영국 | - |
dc.identifier.doi | 10.2166/wst.2013.104 | - |
dc.identifier.scopusid | 2-s2.0-84878329069 | - |
dc.identifier.wosid | 000319256300030 | - |
dc.identifier.bibliographicCitation | WATER SCIENCE AND TECHNOLOGY, v.67, no.9, pp 2124 - 2131 | - |
dc.citation.title | WATER SCIENCE AND TECHNOLOGY | - |
dc.citation.volume | 67 | - |
dc.citation.number | 9 | - |
dc.citation.startPage | 2124 | - |
dc.citation.endPage | 2131 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalResearchArea | Environmental Sciences & Ecology | - |
dc.relation.journalResearchArea | Water Resources | - |
dc.relation.journalWebOfScienceCategory | Engineering, Environmental | - |
dc.relation.journalWebOfScienceCategory | Environmental Sciences | - |
dc.relation.journalWebOfScienceCategory | Water Resources | - |
dc.subject.keywordPlus | ACTIVATED-SLUDGE PROCESS | - |
dc.subject.keywordPlus | BIOFILM | - |
dc.subject.keywordPlus | DECOLORIZATION | - |
dc.subject.keywordPlus | BIODEGRADATION | - |
dc.subject.keywordPlus | WASTEWATERS | - |
dc.subject.keywordPlus | BACTERIA | - |
dc.subject.keywordPlus | DYES | - |
dc.subject.keywordAuthor | biological wastewater treatment | - |
dc.subject.keywordAuthor | cell-immobilized pellet | - |
dc.subject.keywordAuthor | empty bed contact time | - |
dc.subject.keywordAuthor | recalcitrant organics | - |
dc.subject.keywordAuthor | textile wastewater | - |
dc.identifier.url | https://www.proquest.com/docview/1943853056?accountid=11283 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.