Direct Observation of Nanoparticle Superlattice Formation by Using Liquid Cell Transmission Electron Microscopy
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Park, Jungwon | - |
dc.contributor.author | Zheng, Haimei | - |
dc.contributor.author | Lee, Won Chul | - |
dc.contributor.author | Geissler, Phillip L. | - |
dc.contributor.author | Rabani, Eran | - |
dc.contributor.author | Alivisatos, A. Paul | - |
dc.date.accessioned | 2021-06-23T07:53:24Z | - |
dc.date.available | 2021-06-23T07:53:24Z | - |
dc.date.issued | 2012-03 | - |
dc.identifier.issn | 1936-0851 | - |
dc.identifier.issn | 1936-086X | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/33176 | - |
dc.description.abstract | Direct imaging of nanoparticle solutions by liquid phase transmission electron microscopy has enabled unique in situ studies of nanoparticle motion and growth. In the present work, we report on real-time formation of two-dimensional nanoparticle arrays in the very low diffusive limit, where nanoparticles are mainly driven by capillary forces and solvent fluctuations. We find that superlattice formation appears to be segregated into multiple regimes. Initially, the solvent front drags the nanoparticles, condensing them Into an amorphous agglomerate. Subsequently, the nanoparticle crystallization into an array is driven by local fluctuations. Following the crystallization event, superlattice growth can also occur via the addition of individual nanoparticles drawn from outlying regions by different solvent fronts. The dragging mechanism is consistent with simulations based on a coarse-grained lattice gas model at the same limit. | - |
dc.format.extent | 8 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | AMER CHEMICAL SOC | - |
dc.title | Direct Observation of Nanoparticle Superlattice Formation by Using Liquid Cell Transmission Electron Microscopy | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1021/nn203837m | - |
dc.identifier.scopusid | 2-s2.0-84859129458 | - |
dc.identifier.wosid | 000301945900021 | - |
dc.identifier.bibliographicCitation | ACS NANO, v.6, no.3, pp 2078 - 2085 | - |
dc.citation.title | ACS NANO | - |
dc.citation.volume | 6 | - |
dc.citation.number | 3 | - |
dc.citation.startPage | 2078 | - |
dc.citation.endPage | 2085 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | sci | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.subject.keywordPlus | NANOCRYSTAL SUPERLATTICES | - |
dc.subject.keywordPlus | ORIENTATIONAL ORDER | - |
dc.subject.keywordPlus | SELF-ORGANIZATION | - |
dc.subject.keywordPlus | PHASE | - |
dc.subject.keywordPlus | PARTICLES | - |
dc.subject.keywordPlus | CRYSTALS | - |
dc.subject.keywordPlus | GROWTH | - |
dc.subject.keywordPlus | CRYSTALLIZATION | - |
dc.subject.keywordPlus | MONOLAYERS | - |
dc.subject.keywordPlus | SEPARATION | - |
dc.subject.keywordAuthor | nanoparticle | - |
dc.subject.keywordAuthor | self-assembly | - |
dc.subject.keywordAuthor | in situ liquid cell TEM | - |
dc.subject.keywordAuthor | platinum | - |
dc.subject.keywordAuthor | coarse-grained modeling | - |
dc.identifier.url | https://pubs.acs.org/doi/10.1021/nn203837m | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.