Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Drought frequency analysis using cluster analysis and bivariate probability distribution

Full metadata record
DC Field Value Language
dc.contributor.authorYoo, Jiyoung-
dc.contributor.authorKwon, Hyun-Han-
dc.contributor.authorKim, Tae-Woong-
dc.contributor.authorAhn, Jae-Hyun-
dc.date.accessioned2021-06-23T07:54:06Z-
dc.date.available2021-06-23T07:54:06Z-
dc.date.issued2012-02-
dc.identifier.issn0022-1694-
dc.identifier.issn1879-2707-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/33206-
dc.description.abstractAnalyses of drought frequency require long-term historical data to ensure reliable quantile estimates. Estimation of quantiles is difficult, because drought extremes are rare by definition, and the durations of extremes are often too short for reliable point frequency analysis. Regional frequency analysis provides a solution for these problems by using data from multiple sites, provided the sites are homogeneous, and this type of analysis yields appropriate estimates of quantiles at sites of interest. This study aims to develop a practical drought frequency analysis method based on a bivariate distribution by incorporating regional drought attributes that are associated with drought frequency (e.g., duration and severity). This study employed a kernel density function to describe joint probabilistic behavior of drought. Given the proposed approach, we estimated return periods according to the most severe drought events on record at each site, and ultimately assess the risks for occurrence of droughts exceeding the most severe droughts over the next 10, 50, 100, and 150 years. (C) 2011 Elsevier B.V. All rights reserved.-
dc.format.extent10-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier BV-
dc.titleDrought frequency analysis using cluster analysis and bivariate probability distribution-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1016/j.jhydrol.2011.11.046-
dc.identifier.scopusid2-s2.0-84856226847-
dc.identifier.wosid000301082000009-
dc.identifier.bibliographicCitationJournal of Hydrology, v.420, pp 102 - 111-
dc.citation.titleJournal of Hydrology-
dc.citation.volume420-
dc.citation.startPage102-
dc.citation.endPage111-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaGeology-
dc.relation.journalResearchAreaWater Resources-
dc.relation.journalWebOfScienceCategoryEngineering, Civil-
dc.relation.journalWebOfScienceCategoryGeosciences, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryWater Resources-
dc.subject.keywordPlusGUMBEL MIXED-MODEL-
dc.subject.keywordPlusNONPARAMETRIC APPROACH-
dc.subject.keywordAuthorDrought-
dc.subject.keywordAuthorFrequency analysis-
dc.subject.keywordAuthorClustering analysis-
dc.subject.keywordAuthorBivariate distribution-
dc.subject.keywordAuthorDrought risk-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0022169411008316?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Tae Woong photo

Kim, Tae Woong
ERICA 공학대학 (DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE