A Compliant double pin track link Model for Multibody Tracked Vehicles
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 배대성 | - |
dc.date.accessioned | 2021-06-23T08:12:19Z | - |
dc.date.available | 2021-06-23T08:12:19Z | - |
dc.date.created | 2020-12-17 | - |
dc.date.issued | 1999-01-01 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/34188 | - |
dc.description.abstract | Several modeling methods have been recently developed for the dynamic analysis of low speed tracked vehicles. These methods were used to demonstrate the significant effect of the force of the interaction between the track links and vehicle components, even when low speeds are considered. It is the objective of this investigation to develop compliant track link models and investigate the use of these models in the dynamic analysis of high speed, high mobility tracked vehicles. There are two major difficulties encountered in developing the compliant track models discussed in this paper. The first is due to the fact that the integration step size must be kept small in order to maintain the numerical stability of the solution. This solution includes high oscillatory signals resulting from the impulsive contact forces and the use of stiff compliant elements to represent the joints between the track links. The characteristics of the compliant elements used in this investigation to describe the track joints are measured experimentally. A numerical integration method having a relatively large stability region is employed in order to maintain the solution accuracy, and a variable step size integration algorithm is used in order to improve the efficiency. The second difficulty encountered in this investigation is due to the large number of the system equations of motion of the three dimensional multibody tracked vehicle model. The dimensionality problem is solved by decoupling the equations of motion of the chassis subsystem and the track subsystems. Recursive methods are used to obtain a minimum set of equations for the chassis subsystem. Several simulation scenarios including an accelerated motion, high speed motion, braking, and turning motion of the high mobility vehicle are tested in order to demonstrate the effectiveness and validity of the methods proposed in this investigation. | - |
dc.publisher | ASME | - |
dc.title | A Compliant double pin track link Model for Multibody Tracked Vehicles | - |
dc.type | Conference | - |
dc.contributor.affiliatedAuthor | 배대성 | - |
dc.identifier.bibliographicCitation | ASME Design Engineering Technical Conferences | - |
dc.relation.isPartOf | ASME Design Engineering Technical Conferences | - |
dc.citation.title | ASME Design Engineering Technical Conferences | - |
dc.type.rims | CONF | - |
dc.description.journalClass | 1 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.