Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A Compliant double pin track link Model for Multibody Tracked Vehicles

Full metadata record
DC Field Value Language
dc.contributor.author배대성-
dc.date.accessioned2021-06-23T08:12:19Z-
dc.date.available2021-06-23T08:12:19Z-
dc.date.created2020-12-17-
dc.date.issued1999-01-01-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/34188-
dc.description.abstractSeveral modeling methods have been recently developed for the dynamic analysis of low speed tracked vehicles. These methods were used to demonstrate the significant effect of the force of the interaction between the track links and vehicle components, even when low speeds are considered. It is the objective of this investigation to develop compliant track link models and investigate the use of these models in the dynamic analysis of high speed, high mobility tracked vehicles. There are two major difficulties encountered in developing the compliant track models discussed in this paper. The first is due to the fact that the integration step size must be kept small in order to maintain the numerical stability of the solution. This solution includes high oscillatory signals resulting from the impulsive contact forces and the use of stiff compliant elements to represent the joints between the track links. The characteristics of the compliant elements used in this investigation to describe the track joints are measured experimentally. A numerical integration method having a relatively large stability region is employed in order to maintain the solution accuracy, and a variable step size integration algorithm is used in order to improve the efficiency. The second difficulty encountered in this investigation is due to the large number of the system equations of motion of the three dimensional multibody tracked vehicle model. The dimensionality problem is solved by decoupling the equations of motion of the chassis subsystem and the track subsystems. Recursive methods are used to obtain a minimum set of equations for the chassis subsystem. Several simulation scenarios including an accelerated motion, high speed motion, braking, and turning motion of the high mobility vehicle are tested in order to demonstrate the effectiveness and validity of the methods proposed in this investigation.-
dc.publisherASME-
dc.titleA Compliant double pin track link Model for Multibody Tracked Vehicles-
dc.typeConference-
dc.contributor.affiliatedAuthor배대성-
dc.identifier.bibliographicCitationASME Design Engineering Technical Conferences-
dc.relation.isPartOfASME Design Engineering Technical Conferences-
dc.citation.titleASME Design Engineering Technical Conferences-
dc.type.rimsCONF-
dc.description.journalClass1-
Files in This Item
There are no files associated with this item.
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MECHANICAL ENGINEERING > 2. Conference Papers

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE