Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Unveiling dual-linkage 3D hexaiminobenzene metal-organic frameworks towards long-lasting advanced reversible Zn-air batteries

Full metadata record
DC Field Value Language
dc.contributor.authorShinde, Sambhaji S.-
dc.contributor.authorLee, Chi Ho-
dc.contributor.authorJung, Jin-Young-
dc.contributor.authorWagh, Nayantara K.-
dc.contributor.authorKim, Sung-Hae-
dc.contributor.authorKim, Dong-Hyung-
dc.contributor.authorLin, Chao-
dc.contributor.authorLee, Sang Uck-
dc.contributor.authorLee, Jung-Ho-
dc.date.accessioned2021-06-22T10:22:38Z-
dc.date.available2021-06-22T10:22:38Z-
dc.date.issued2019-02-
dc.identifier.issn1754-5692-
dc.identifier.issn1754-5706-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/3500-
dc.description.abstractAdvanced Zn-air batteries (ZABs) with ultrahigh cycle life, which also harness energy with bifunctional electrochemical reactions, are significantly challenging for the commercialization of hybrid/electric vehicles and wearable electronics. Herein, we demonstrated robust aqueous and flexible ZABs with novel three-dimensional dual-linked hexaiminobenzene metal-organic framework (Mn/Fe-HIB-MOF)-based bifunctional oxygen electrocatalysts and superionic functionalized bio-cellulose electrolytes (64 mS cm(-1)). The well-defined quintet-shelled hollow sphere MOFs possess a hierarchical porous structure, excellent packing density with a surface area of 2298 m(2) g(-1), and chemical stability as compared to conventional MOFs. Mn/Fe-HIB-MOF exhibited superior bifunctional oxygen electrocatalytic activity (0.627 V) with half-wave potential (0.883 V) for oxygen reduction and overpotential (280 mV@10 mA cm(-2)) for oxygen evolution reactions, outperforming commercial Pt/C and RuO2. Their favorable oxygen reactions and surface electronic structures were confirmed by density functional theory. Significantly, the Mn/Fe-HIB-MOF cathode demonstrated the highest lifetimes reported to date for rechargeable ZABs, namely 1000 h (0.75 V voltage gap@10 mA cm(-2)) over 6000 cycles and 600 h (efficiency approximate to 65.24%@25 mA cm(-2)) over 3600 cycles with excellent flexibility for liquid and all-solid-state flexible ZABs, respectively. These promising results illustrate the great potential of these novel hexaiminobenzene MOFs and superionic bio-cellulose membranes for the commercial implementation of rechargeable ZABs.-
dc.format.extent12-
dc.language영어-
dc.language.isoENG-
dc.publisherRoyal Society of Chemistry-
dc.titleUnveiling dual-linkage 3D hexaiminobenzene metal-organic frameworks towards long-lasting advanced reversible Zn-air batteries-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1039/c8ee02679c-
dc.identifier.scopusid2-s2.0-85061905157-
dc.identifier.wosid000459741700021-
dc.identifier.bibliographicCitationEnergy & Environmental Science, v.12, no.2, pp 727 - 738-
dc.citation.titleEnergy & Environmental Science-
dc.citation.volume12-
dc.citation.number2-
dc.citation.startPage727-
dc.citation.endPage738-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaEnvironmental Sciences & Ecology-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalWebOfScienceCategoryEnvironmental Sciences-
dc.subject.keywordPlusOXYGEN REDUCTION-
dc.subject.keywordPlusBIFUNCTIONAL ELECTROCATALYST-
dc.subject.keywordPlusSCALABLE SYNTHESIS-
dc.subject.keywordPlusCARBON MATERIALS-
dc.subject.keywordPlusACTIVE-SITES-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordPlusROBUST-
dc.subject.keywordPlusSUPERCAPACITORS-
dc.subject.keywordPlusCATHODE-
dc.identifier.urlhttps://pubs.rsc.org/en/content/articlelanding/2019/EE/C8EE02679C-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING > 1. Journal Articles
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > DEPARTMENT OF CHEMICAL AND MOLECULAR ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Jung-Ho photo

Lee, Jung-Ho
ERICA 첨단융합대학 (ERICA 신소재·반도체공학전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE