Unveiling dual-linkage 3D hexaiminobenzene metal-organic frameworks towards long-lasting advanced reversible Zn-air batteries
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Shinde, Sambhaji S. | - |
dc.contributor.author | Lee, Chi Ho | - |
dc.contributor.author | Jung, Jin-Young | - |
dc.contributor.author | Wagh, Nayantara K. | - |
dc.contributor.author | Kim, Sung-Hae | - |
dc.contributor.author | Kim, Dong-Hyung | - |
dc.contributor.author | Lin, Chao | - |
dc.contributor.author | Lee, Sang Uck | - |
dc.contributor.author | Lee, Jung-Ho | - |
dc.date.accessioned | 2021-06-22T10:22:38Z | - |
dc.date.available | 2021-06-22T10:22:38Z | - |
dc.date.issued | 2019-02 | - |
dc.identifier.issn | 1754-5692 | - |
dc.identifier.issn | 1754-5706 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/3500 | - |
dc.description.abstract | Advanced Zn-air batteries (ZABs) with ultrahigh cycle life, which also harness energy with bifunctional electrochemical reactions, are significantly challenging for the commercialization of hybrid/electric vehicles and wearable electronics. Herein, we demonstrated robust aqueous and flexible ZABs with novel three-dimensional dual-linked hexaiminobenzene metal-organic framework (Mn/Fe-HIB-MOF)-based bifunctional oxygen electrocatalysts and superionic functionalized bio-cellulose electrolytes (64 mS cm(-1)). The well-defined quintet-shelled hollow sphere MOFs possess a hierarchical porous structure, excellent packing density with a surface area of 2298 m(2) g(-1), and chemical stability as compared to conventional MOFs. Mn/Fe-HIB-MOF exhibited superior bifunctional oxygen electrocatalytic activity (0.627 V) with half-wave potential (0.883 V) for oxygen reduction and overpotential (280 mV@10 mA cm(-2)) for oxygen evolution reactions, outperforming commercial Pt/C and RuO2. Their favorable oxygen reactions and surface electronic structures were confirmed by density functional theory. Significantly, the Mn/Fe-HIB-MOF cathode demonstrated the highest lifetimes reported to date for rechargeable ZABs, namely 1000 h (0.75 V voltage gap@10 mA cm(-2)) over 6000 cycles and 600 h (efficiency approximate to 65.24%@25 mA cm(-2)) over 3600 cycles with excellent flexibility for liquid and all-solid-state flexible ZABs, respectively. These promising results illustrate the great potential of these novel hexaiminobenzene MOFs and superionic bio-cellulose membranes for the commercial implementation of rechargeable ZABs. | - |
dc.format.extent | 12 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Royal Society of Chemistry | - |
dc.title | Unveiling dual-linkage 3D hexaiminobenzene metal-organic frameworks towards long-lasting advanced reversible Zn-air batteries | - |
dc.type | Article | - |
dc.publisher.location | 영국 | - |
dc.identifier.doi | 10.1039/c8ee02679c | - |
dc.identifier.scopusid | 2-s2.0-85061905157 | - |
dc.identifier.wosid | 000459741700021 | - |
dc.identifier.bibliographicCitation | Energy & Environmental Science, v.12, no.2, pp 727 - 738 | - |
dc.citation.title | Energy & Environmental Science | - |
dc.citation.volume | 12 | - |
dc.citation.number | 2 | - |
dc.citation.startPage | 727 | - |
dc.citation.endPage | 738 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | sci | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Energy & Fuels | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalResearchArea | Environmental Sciences & Ecology | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
dc.relation.journalWebOfScienceCategory | Engineering, Chemical | - |
dc.relation.journalWebOfScienceCategory | Environmental Sciences | - |
dc.subject.keywordPlus | OXYGEN REDUCTION | - |
dc.subject.keywordPlus | BIFUNCTIONAL ELECTROCATALYST | - |
dc.subject.keywordPlus | SCALABLE SYNTHESIS | - |
dc.subject.keywordPlus | CARBON MATERIALS | - |
dc.subject.keywordPlus | ACTIVE-SITES | - |
dc.subject.keywordPlus | ELECTRODES | - |
dc.subject.keywordPlus | EFFICIENT | - |
dc.subject.keywordPlus | ROBUST | - |
dc.subject.keywordPlus | SUPERCAPACITORS | - |
dc.subject.keywordPlus | CATHODE | - |
dc.identifier.url | https://pubs.rsc.org/en/content/articlelanding/2019/EE/C8EE02679C | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.