Performance Evaluation of Distance Measurement Methods for Construction Noise Prediction Using Case-Based Reasoning
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kwon, Nahyun | - |
dc.contributor.author | Lee, Joosung | - |
dc.contributor.author | Park, Moonsun | - |
dc.contributor.author | Yoon, Inseok | - |
dc.contributor.author | Ahn, Yonghan | - |
dc.date.accessioned | 2021-06-22T10:22:43Z | - |
dc.date.available | 2021-06-22T10:22:43Z | - |
dc.date.issued | 2019-02 | - |
dc.identifier.issn | 2071-1050 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/3507 | - |
dc.description.abstract | Concerns over environmental issues have recently increased. Particularly, construction noise in highly populated areas is recognized as a serious stressor that not only negatively affects humans and their environment, but also construction firms through project delays and cost overruns. To deal with noise-related problems, noise levels need to be predicted during the preconstruction phase. Case-based reasoning (CBR) has recently been applied to noise prediction, but some challenges remain to be addressed. In particular, problems with the distance measurement method have been recognized as a recurring issue. In this research, the accuracy of the prediction results was examined for two distance measurement methods: The weighted Euclidean distance (WED) and a combination of the Jaccard and Euclidean distances (JED). The differences and absolute error rates confirmed that the JED provided slightly more accurate results than the WED with an error ratio of approximately 6%. The results showed that different methods, depending on the attribute types, need to be employed when computing similarity distances. This research not only contributes an approach to achieve reliable prediction with CBR, but also contributes to the literature on noise management to ensure a sustainable environment by elucidating the effects of distance measurement depending on the attribute types. | - |
dc.format.extent | 18 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | MDPI | - |
dc.title | Performance Evaluation of Distance Measurement Methods for Construction Noise Prediction Using Case-Based Reasoning | - |
dc.type | Article | - |
dc.publisher.location | 스위스 | - |
dc.identifier.doi | 10.3390/su11030871 | - |
dc.identifier.scopusid | 2-s2.0-85061120835 | - |
dc.identifier.wosid | 000458929500316 | - |
dc.identifier.bibliographicCitation | SUSTAINABILITY, v.11, no.3, pp 1 - 18 | - |
dc.citation.title | SUSTAINABILITY | - |
dc.citation.volume | 11 | - |
dc.citation.number | 3 | - |
dc.citation.startPage | 1 | - |
dc.citation.endPage | 18 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | ssci | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Environmental Sciences & Ecology | - |
dc.relation.journalWebOfScienceCategory | Green & Sustainable Science & Technology | - |
dc.relation.journalWebOfScienceCategory | Environmental Sciences | - |
dc.relation.journalWebOfScienceCategory | Environmental Studies | - |
dc.subject.keywordPlus | ROAD-TRAFFIC NOISE | - |
dc.subject.keywordPlus | ENVIRONMENTAL NOISE | - |
dc.subject.keywordPlus | IMPACT ASSESSMENT | - |
dc.subject.keywordPlus | COST PREDICTION | - |
dc.subject.keywordPlus | RAILWAY NOISE | - |
dc.subject.keywordPlus | SOCIAL COST | - |
dc.subject.keywordPlus | CBR MODEL | - |
dc.subject.keywordPlus | SELECTION | - |
dc.subject.keywordPlus | EXPOSURE | - |
dc.subject.keywordPlus | DECISION | - |
dc.subject.keywordAuthor | Noise prediction | - |
dc.subject.keywordAuthor | construction noise | - |
dc.subject.keywordAuthor | case-based reasoning | - |
dc.subject.keywordAuthor | distance measurement method | - |
dc.subject.keywordAuthor | Jaccard distance | - |
dc.subject.keywordAuthor | Euclidean distance | - |
dc.identifier.url | https://www.mdpi.com/2071-1050/11/3/871 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.