Multivariate binormal mixtures for semi-parametric inference on ROC curves
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dass, Sarat C. | - |
dc.contributor.author | Kim, Seong W. | - |
dc.date.accessioned | 2021-06-23T10:04:19Z | - |
dc.date.available | 2021-06-23T10:04:19Z | - |
dc.date.issued | 2011-12 | - |
dc.identifier.issn | 1226-3192 | - |
dc.identifier.issn | 1876-4231 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/36368 | - |
dc.description.abstract | A Receiver Operating Characteristic (ROC) curve reflects the performance of a system which decides between two competing actions in a test of statistical hypotheses. This paper addresses the inference on ROC curves for the following problem: How can one statistically validate the performance of a system with a claimed ROC curve, ROC0 say? Our proposed solution consists of two main components: first, a flexible family of distributions, namely the multivariate binormal mixtures, is proposed to account for intra-sample correlation and non-Gaussianity of the marginal distributions under both the null and alternative hypotheses. Second, a semi-parametric inferential framework is developed for estimating all unknown parameters based on a rank likelihood. Actual inference is carried out by running a Gibbs sampler until convergence, and subsequently, constructing a highest posterior density (HPD) set for the true but unknown ROC curve based on the Gibbs output. The proposed methodology is illustrated on several simulation studies and real data. (C) 2011 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved. | - |
dc.format.extent | 14 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | 한국통계학회 | - |
dc.title | Multivariate binormal mixtures for semi-parametric inference on ROC curves | - |
dc.type | Article | - |
dc.publisher.location | 대한민국 | - |
dc.identifier.doi | 10.1016/j.jkss.2011.05.002 | - |
dc.identifier.scopusid | 2-s2.0-82855178845 | - |
dc.identifier.wosid | 000297833100007 | - |
dc.identifier.bibliographicCitation | Journal of the Korean Statistical Society, v.40, no.4, pp 397 - 410 | - |
dc.citation.title | Journal of the Korean Statistical Society | - |
dc.citation.volume | 40 | - |
dc.citation.number | 4 | - |
dc.citation.startPage | 397 | - |
dc.citation.endPage | 410 | - |
dc.type.docType | Article | - |
dc.identifier.kciid | ART001619560 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.description.journalRegisteredClass | kci | - |
dc.relation.journalResearchArea | Mathematics | - |
dc.relation.journalWebOfScienceCategory | Statistics & Probability | - |
dc.subject.keywordPlus | MODELS | - |
dc.subject.keywordAuthor | Bayesian computation | - |
dc.subject.keywordAuthor | Group invariance | - |
dc.subject.keywordAuthor | Mixture models | - |
dc.subject.keywordAuthor | Semi-parametric inference | - |
dc.identifier.url | https://link.springer.com/article/10.1016/j.jkss.2011.05.002?utm_source=getftr&utm_medium=getftr&utm_campaign=getftr_pilot | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.