Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A Python-based Docking Program Utilizing a Receptor Bound Ligand Shape: PythDock

Full metadata record
DC Field Value Language
dc.contributor.authorChung, Jae Yoon-
dc.contributor.authorCho, Seung Joo-
dc.contributor.authorHah, Jung-Mi-
dc.date.accessioned2021-06-23T10:38:29Z-
dc.date.available2021-06-23T10:38:29Z-
dc.date.issued2011-09-
dc.identifier.issn0253-6269-
dc.identifier.issn1976-3786-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/37223-
dc.description.abstractPythDock is a heuristic docking program that uses Python programming language with a simple scoring function and a population based search engine. The scoring function considers electrostatic and dispersion/repulsion terms. The search engine utilizes a particle swarm optimization algorithm. A grid potential map is generated using the shape information of a bound ligand within the active site. Therefore, the searching area is more relevant to the ligand binding. To evaluate the docking performance of PythDock, two well-known docking programs (AutoDock and DOCK) were also used with the same data. The accuracy of docked results were measured by the difference of the ligand structure between x-ray structure, and docked pose, i.e., average root mean squared deviation values of the bound ligand were compared for fourteen protein-ligand complexes. Since the number of ligands' rotational flexibility is an important factor affecting the accuracy of a docking, the data set was chosen to have various degrees of flexibility. Although PythDock has a scoring function simpler than those of other programs (AutoDock and DOCK), our results showed that PythDock predicted more accurate poses than both AutoDock4.2 and DOCK6.2. This indicates that PythDock could be a useful tool to study ligand-receptor interactions and could also be beneficial in structure based drug design.-
dc.format.extent8-
dc.language영어-
dc.language.isoENG-
dc.publisherPHARMACEUTICAL SOC KOREA-
dc.titleA Python-based Docking Program Utilizing a Receptor Bound Ligand Shape: PythDock-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.doi10.1007/s12272-011-0906-5-
dc.identifier.scopusid2-s2.0-80755159036-
dc.identifier.wosid000295825600008-
dc.identifier.bibliographicCitationARCHIVES OF PHARMACAL RESEARCH, v.34, no.9, pp 1451 - 1458-
dc.citation.titleARCHIVES OF PHARMACAL RESEARCH-
dc.citation.volume34-
dc.citation.number9-
dc.citation.startPage1451-
dc.citation.endPage1458-
dc.type.docTypeArticle-
dc.identifier.kciidART001593285-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalResearchAreaPharmacology & Pharmacy-
dc.relation.journalWebOfScienceCategoryChemistry, Medicinal-
dc.relation.journalWebOfScienceCategoryPharmacology & Pharmacy-
dc.subject.keywordPlusEMPIRICAL SCORING FUNCTIONS-
dc.subject.keywordPlusSMALL-MOLECULE DOCKING-
dc.subject.keywordPlusAUTOMATED DOCKING-
dc.subject.keywordPlusSEARCH-
dc.subject.keywordPlusOPTIMIZATION-
dc.subject.keywordPlusALGORITHMS-
dc.subject.keywordPlusPROTEINS-
dc.subject.keywordAuthorInitial population-
dc.subject.keywordAuthorLead optimization-
dc.subject.keywordAuthorMolecular docking-
dc.subject.keywordAuthorMolecular shape-
dc.subject.keywordAuthorParticle swarm optimization-
dc.subject.keywordAuthorPythDock-
dc.subject.keywordAuthorVirtual screening-
dc.identifier.urlhttps://link.springer.com/article/10.1007%2Fs12272-011-0906-5-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF PHARMACY > DEPARTMENT OF PHARMACY > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Hah, Jung Mi photo

Hah, Jung Mi
COLLEGE OF PHARMACY (DEPARTMENT OF PHARMACY)
Read more

Altmetrics

Total Views & Downloads

BROWSE