Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Meteorological responses to Mt. Baekdu volcanic eruption over east asia in an offline global climate-chemistry model: A pilot study

Authors
Moon, Byung-KwonYoun, DaeokPark, Rokjin J.Yeh, Sang-WookKim, Won-MoKim, Young-HoJeong, Jaein I.Woo, Jung-HunIm, Eul GyuSong, Chang-Keun
Issue Date
Aug-2011
Publisher
한국기상학회
Keywords
Mt. Baekdu; volcanic eruption; meteorological response; climate model; chemistry-transport model
Citation
Asia-Pacific Journal of Atmospheric Sciences, v.47, no.4, pp 345 - 351
Pages
7
Indexed
SCIE
SCOPUS
KCI
Journal Title
Asia-Pacific Journal of Atmospheric Sciences
Volume
47
Number
4
Start Page
345
End Page
351
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/37269
DOI
10.1007/s13143-011-0021-z
ISSN
1976-7633
1976-7951
Abstract
We examine the meteorological responses due to the probable eruption of Mt. Baekdu using an off-line Climate-Chemistry model that is composed of the National Center for Atmospheric Research (NCAR) Climate Atmosphere Model version 3 (CAM3) and a global chemistry transport model (GEOS-Chem). Using the aerosol dataset from the GEOS-Chem driven by GEOS-5 meteorology, experiment and control simulations of the climate model are performed and their meteorological differences between the two simulations are analyzed. The magnitudes of volcanic eruption and column injection height were presumably set to 1/200 of the Mt. Pinatubo eruption and 9 km, respectively. Significant temperature drop in the lower troposphere (850 hPa), which is mainly due to a direct effect of prescribed volcanic aerosols from Mt. Baekdu, has been simulated up to about -4 K. The upper atmosphere (150 hPa) right above the volcano, however, shows significant warming due to the absorption of the infrared radiation by volcanic aerosols. As a result of the volcanic eruption in the climate model, wave-like patterns are shown in both the geopotential height and horizontal wind. The changes in the lower atmospheric temperature are well associated with the modification of the atmospheric circulation through the hydrostatic balance. In spite of limitations in our current simulations due to several underlying assumptions, our results could give a clue to understanding the meteorological impacts from Mt. Baekdu eruptions that are currently attracting considerable public attention.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > DEPARTMENT OF MARINE SCIENCE AND CONVERGENCE ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yeh, Sang Wook photo

Yeh, Sang Wook
ERICA 공학대학 (ERICA 해양융합공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE