TWITOBI: A recommendation system for Twitter using probabilistic modeling
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Younghoon | - |
dc.contributor.author | Shim, Kyuseok | - |
dc.date.accessioned | 2021-06-23T11:37:00Z | - |
dc.date.available | 2021-06-23T11:37:00Z | - |
dc.date.issued | 2011-12 | - |
dc.identifier.issn | 1550-4786 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/38703 | - |
dc.description.abstract | Twitter provides search services to help people find new users to follow by recommending popular users or their friends' friends. However, these services do not offer the most relevant users to follow for a user. Furthermore, Twitter does not provide yet the search services to find the most interesting tweet messages for a user either. In this paper, we propose TWITOBI, a recommendation system for Twitter using probabilistic modeling for collaborative filtering which can recommend top-K users to follow and top-K tweets to read for a user. Our novel probabilistic model utilizes not only tweet messages but also the relationships between users. We develop an estimation algorithm for learning our model parameters and present its parallelized algorithm using MapReduce to handle large data. Our performance study with real-life data sets confirms the effectiveness and scalability of our algorithms. © 2011 IEEE. | - |
dc.format.extent | 10 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.title | TWITOBI: A recommendation system for Twitter using probabilistic modeling | - |
dc.type | Article | - |
dc.identifier.doi | 10.1109/ICDM.2011.150 | - |
dc.identifier.scopusid | 2-s2.0-84863177076 | - |
dc.identifier.bibliographicCitation | Proceedings - IEEE International Conference on Data Mining, ICDM, pp 340 - 349 | - |
dc.citation.title | Proceedings - IEEE International Conference on Data Mining, ICDM | - |
dc.citation.startPage | 340 | - |
dc.citation.endPage | 349 | - |
dc.type.docType | Conference Paper | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | Collaborative filtering | - |
dc.subject.keywordPlus | Estimation algorithm | - |
dc.subject.keywordPlus | Large data | - |
dc.subject.keywordPlus | Map-reduce | - |
dc.subject.keywordPlus | Model parameters | - |
dc.subject.keywordPlus | Parallelized algorithm | - |
dc.subject.keywordPlus | Performance study | - |
dc.subject.keywordPlus | Probabilistic modeling | - |
dc.subject.keywordPlus | Probabilistic models | - |
dc.subject.keywordPlus | Real life datasets | - |
dc.subject.keywordPlus | Search services | - |
dc.subject.keywordPlus | - | |
dc.subject.keywordPlus | Algorithms | - |
dc.subject.keywordPlus | Data mining | - |
dc.subject.keywordPlus | Recommender systems | - |
dc.subject.keywordPlus | Social networking (online) | - |
dc.subject.keywordAuthor | Collaborative filtering | - |
dc.subject.keywordAuthor | MapReduce | - |
dc.subject.keywordAuthor | Probabilistic model | - |
dc.subject.keywordAuthor | Recommendation system | - |
dc.subject.keywordAuthor | - | |
dc.identifier.url | https://ieeexplore.ieee.org/document/6137238 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.