Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

TWITOBI: A recommendation system for Twitter using probabilistic modeling

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Younghoon-
dc.contributor.authorShim, Kyuseok-
dc.date.accessioned2021-06-23T11:37:00Z-
dc.date.available2021-06-23T11:37:00Z-
dc.date.issued2011-12-
dc.identifier.issn1550-4786-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/38703-
dc.description.abstractTwitter provides search services to help people find new users to follow by recommending popular users or their friends' friends. However, these services do not offer the most relevant users to follow for a user. Furthermore, Twitter does not provide yet the search services to find the most interesting tweet messages for a user either. In this paper, we propose TWITOBI, a recommendation system for Twitter using probabilistic modeling for collaborative filtering which can recommend top-K users to follow and top-K tweets to read for a user. Our novel probabilistic model utilizes not only tweet messages but also the relationships between users. We develop an estimation algorithm for learning our model parameters and present its parallelized algorithm using MapReduce to handle large data. Our performance study with real-life data sets confirms the effectiveness and scalability of our algorithms. © 2011 IEEE.-
dc.format.extent10-
dc.language영어-
dc.language.isoENG-
dc.titleTWITOBI: A recommendation system for Twitter using probabilistic modeling-
dc.typeArticle-
dc.identifier.doi10.1109/ICDM.2011.150-
dc.identifier.scopusid2-s2.0-84863177076-
dc.identifier.bibliographicCitationProceedings - IEEE International Conference on Data Mining, ICDM, pp 340 - 349-
dc.citation.titleProceedings - IEEE International Conference on Data Mining, ICDM-
dc.citation.startPage340-
dc.citation.endPage349-
dc.type.docTypeConference Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusCollaborative filtering-
dc.subject.keywordPlusEstimation algorithm-
dc.subject.keywordPlusLarge data-
dc.subject.keywordPlusMap-reduce-
dc.subject.keywordPlusModel parameters-
dc.subject.keywordPlusParallelized algorithm-
dc.subject.keywordPlusPerformance study-
dc.subject.keywordPlusProbabilistic modeling-
dc.subject.keywordPlusProbabilistic models-
dc.subject.keywordPlusReal life datasets-
dc.subject.keywordPlusSearch services-
dc.subject.keywordPlusTwitter-
dc.subject.keywordPlusAlgorithms-
dc.subject.keywordPlusData mining-
dc.subject.keywordPlusRecommender systems-
dc.subject.keywordPlusSocial networking (online)-
dc.subject.keywordAuthorCollaborative filtering-
dc.subject.keywordAuthorMapReduce-
dc.subject.keywordAuthorProbabilistic model-
dc.subject.keywordAuthorRecommendation system-
dc.subject.keywordAuthorTwitter-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/6137238-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF COMPUTING > DEPARTMENT OF ARTIFICIAL INTELLIGENCE > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Young hoon photo

Kim, Young hoon
ERICA 소프트웨어융합대학 (DEPARTMENT OF ARTIFICIAL INTELLIGENCE)
Read more

Altmetrics

Total Views & Downloads

BROWSE