Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

New hand gesture recognition method for mouse operations

Full metadata record
DC Field Value Language
dc.contributor.authorHaq, Ehsan ul-
dc.contributor.authorPirzada, Syed Jahanzeb Hussain-
dc.contributor.authorBaig, Mirza waqar-
dc.contributor.authorShin, Hyunchul-
dc.date.accessioned2021-06-23T12:03:33Z-
dc.date.available2021-06-23T12:03:33Z-
dc.date.issued2011-08-
dc.identifier.issn1548-3746-
dc.identifier.issn1558-3899-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/39085-
dc.description.abstractHand gestures can be used for natural and intuitive human-computer interaction. Our new method combines existing techniques of skin color based ROI segmentation and Viola-Jones Haar-like feature based object detection, to optimize hand gesture recognition for mouse operation. A mouse operation has two parts, movement of cursor and clicking using the right or left mouse button. In this paper, color is used as a robust feature to first define a Region of Interest (ROI). Then within this ROI, hand postures are detected by using Haar-like features and AdaBoost learning algorithm. The AdaBoost learning algorithm significantly speeds up the performance and constructs an accurate cascaded classifier by combining a sequence of weak classifiers. © 2011 IEEE.-
dc.format.extent4-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE-
dc.titleNew hand gesture recognition method for mouse operations-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/MWSCAS.2011.6026330-
dc.identifier.scopusid2-s2.0-80053647084-
dc.identifier.bibliographicCitation2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS), pp 1 - 4-
dc.citation.title2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS)-
dc.citation.startPage1-
dc.citation.endPage4-
dc.type.docTypeConference Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusAdaboost learning-
dc.subject.keywordPlusCascaded classifiers-
dc.subject.keywordPlusHaar-like features-
dc.subject.keywordPlusHand gesture-
dc.subject.keywordPlusHand posture-
dc.subject.keywordPlusHand-gesture recognition-
dc.subject.keywordPlusMouse operations-
dc.subject.keywordPlusObject Detection-
dc.subject.keywordPlusRegion of interest-
dc.subject.keywordPlusSkin color-
dc.subject.keywordPlusWeak classifiers-
dc.subject.keywordPlusAdaptive boosting-
dc.subject.keywordPlusAlgorithms-
dc.subject.keywordPlusFeature extraction-
dc.subject.keywordPlusHuman computer interaction-
dc.subject.keywordPlusMammals-
dc.subject.keywordPlusObject recognition-
dc.subject.keywordPlusGesture recognition-
dc.subject.keywordAuthorObject Detection-
dc.subject.keywordAuthorWeak classifiers-
dc.subject.keywordAuthorGesture recognition-
dc.subject.keywordAuthorHaar-like features-
dc.subject.keywordAuthorHand posture-
dc.subject.keywordAuthorHand gesture-
dc.subject.keywordAuthorMammals-
dc.subject.keywordAuthorObject recognition-
dc.subject.keywordAuthorCascaded classifiers-
dc.subject.keywordAuthorMouse operations-
dc.subject.keywordAuthorHuman computer interaction-
dc.subject.keywordAuthorAlgorithms-
dc.subject.keywordAuthorRegion of interest-
dc.subject.keywordAuthorHand-gesture recognit-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/6026330-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE