New hand gesture recognition method for mouse operations
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Haq, Ehsan ul | - |
dc.contributor.author | Pirzada, Syed Jahanzeb Hussain | - |
dc.contributor.author | Baig, Mirza waqar | - |
dc.contributor.author | Shin, Hyunchul | - |
dc.date.accessioned | 2021-06-23T12:03:33Z | - |
dc.date.available | 2021-06-23T12:03:33Z | - |
dc.date.issued | 2011-08 | - |
dc.identifier.issn | 1548-3746 | - |
dc.identifier.issn | 1558-3899 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/39085 | - |
dc.description.abstract | Hand gestures can be used for natural and intuitive human-computer interaction. Our new method combines existing techniques of skin color based ROI segmentation and Viola-Jones Haar-like feature based object detection, to optimize hand gesture recognition for mouse operation. A mouse operation has two parts, movement of cursor and clicking using the right or left mouse button. In this paper, color is used as a robust feature to first define a Region of Interest (ROI). Then within this ROI, hand postures are detected by using Haar-like features and AdaBoost learning algorithm. The AdaBoost learning algorithm significantly speeds up the performance and constructs an accurate cascaded classifier by combining a sequence of weak classifiers. © 2011 IEEE. | - |
dc.format.extent | 4 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | IEEE | - |
dc.title | New hand gesture recognition method for mouse operations | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1109/MWSCAS.2011.6026330 | - |
dc.identifier.scopusid | 2-s2.0-80053647084 | - |
dc.identifier.bibliographicCitation | 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS), pp 1 - 4 | - |
dc.citation.title | 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS) | - |
dc.citation.startPage | 1 | - |
dc.citation.endPage | 4 | - |
dc.type.docType | Conference Paper | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | Adaboost learning | - |
dc.subject.keywordPlus | Cascaded classifiers | - |
dc.subject.keywordPlus | Haar-like features | - |
dc.subject.keywordPlus | Hand gesture | - |
dc.subject.keywordPlus | Hand posture | - |
dc.subject.keywordPlus | Hand-gesture recognition | - |
dc.subject.keywordPlus | Mouse operations | - |
dc.subject.keywordPlus | Object Detection | - |
dc.subject.keywordPlus | Region of interest | - |
dc.subject.keywordPlus | Skin color | - |
dc.subject.keywordPlus | Weak classifiers | - |
dc.subject.keywordPlus | Adaptive boosting | - |
dc.subject.keywordPlus | Algorithms | - |
dc.subject.keywordPlus | Feature extraction | - |
dc.subject.keywordPlus | Human computer interaction | - |
dc.subject.keywordPlus | Mammals | - |
dc.subject.keywordPlus | Object recognition | - |
dc.subject.keywordPlus | Gesture recognition | - |
dc.subject.keywordAuthor | Object Detection | - |
dc.subject.keywordAuthor | Weak classifiers | - |
dc.subject.keywordAuthor | Gesture recognition | - |
dc.subject.keywordAuthor | Haar-like features | - |
dc.subject.keywordAuthor | Hand posture | - |
dc.subject.keywordAuthor | Hand gesture | - |
dc.subject.keywordAuthor | Mammals | - |
dc.subject.keywordAuthor | Object recognition | - |
dc.subject.keywordAuthor | Cascaded classifiers | - |
dc.subject.keywordAuthor | Mouse operations | - |
dc.subject.keywordAuthor | Human computer interaction | - |
dc.subject.keywordAuthor | Algorithms | - |
dc.subject.keywordAuthor | Region of interest | - |
dc.subject.keywordAuthor | Hand-gesture recognit | - |
dc.identifier.url | https://ieeexplore.ieee.org/document/6026330 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.