Latin Hypercube Samplign과 크리깅기법을 이용한 휠인 매입형 영구자석 동기 전동기의 다목적 최적설계
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 권병일 | - |
dc.date.accessioned | 2021-06-23T13:03:15Z | - |
dc.date.available | 2021-06-23T13:03:15Z | - |
dc.date.created | 2021-02-18 | - |
dc.date.issued | 2010-07 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/39662 | - |
dc.description.abstract | This paper introduces a multi-object optimal design process for interior permanent magnet synchronous motor (IPMSM) to improve parameter such as saliency ratio, cogging torque, efficiency. A finite element method (FEM) was used for calculating the inductances of the d-axis and q-axis by changing the structure of rotor shape in IPMSM. After FEM analysis, optimal design process to find optimal rotor shape is processed. In optimal process, the Kriging method based on Latin hypercube sampling (LHS) and a genetic algorithm (GA) are applied due to suitability to non-linear data. Using this optimal design process, an optimal rotor shape is obtained. The optimal model has an increased wide speed range with reduced cogging torque. | - |
dc.publisher | 대한전기학회 | - |
dc.title | Latin Hypercube Samplign과 크리깅기법을 이용한 휠인 매입형 영구자석 동기 전동기의 다목적 최적설계 | - |
dc.title.alternative | Multi-Object Optimal Design of IPMSM by Using the Kriging Model and Latin hypercube sampling | - |
dc.type | Article | - |
dc.contributor.affiliatedAuthor | 권병일 | - |
dc.identifier.bibliographicCitation | 2010년도 대한전기학회 하계학술대회 논문집, v. , no. , pp.698 - 699 | - |
dc.relation.isPartOf | 2010년도 대한전기학회 하계학술대회 논문집 | - |
dc.citation.title | 2010년도 대한전기학회 하계학술대회 논문집 | - |
dc.citation.startPage | 698 | - |
dc.citation.endPage | 699 | - |
dc.type.rims | ART | - |
dc.description.journalClass | 3 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.