적외선 영상에서의 과분할 영역기반 표적 분류기법
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 김재협 | - |
dc.contributor.author | 전갑송 | - |
dc.contributor.author | 문영식 | - |
dc.date.accessioned | 2021-06-23T13:05:09Z | - |
dc.date.available | 2021-06-23T13:05:09Z | - |
dc.date.issued | 2010-06 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/39769 | - |
dc.description.abstract | In this paper, we popose the method of target classification method based on overfitting region in infrared images. As the infrared image, it has no significant features of specific gradient and texture information. So, in generally, it's so hard to segment target object region from original image, and to extract features to using classification. In our proposed method, infrared image is splitted small areas, and then the union of over segmented regions is applied to classify target object. | - |
dc.format.extent | 3 | - |
dc.language | 한국어 | - |
dc.language.iso | KOR | - |
dc.publisher | 대한전자공학회 | - |
dc.title | 적외선 영상에서의 과분할 영역기반 표적 분류기법 | - |
dc.title.alternative | Target Classification Method Based on Over-Segmented Region in IR Images | - |
dc.type | Article | - |
dc.publisher.location | 대한민국 | - |
dc.identifier.bibliographicCitation | 대한전자공학회 2010년 하계학술대회, v.33, no.1, pp 1627 - 1629 | - |
dc.citation.title | 대한전자공학회 2010년 하계학술대회 | - |
dc.citation.volume | 33 | - |
dc.citation.number | 1 | - |
dc.citation.startPage | 1627 | - |
dc.citation.endPage | 1629 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | other | - |
dc.identifier.url | https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE01482148 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.