Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Bayesian approach with the power prior for road safety analysis

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Soobeom-
dc.contributor.authorChoi, Jaisung-
dc.contributor.authorKim, Seong W.-
dc.date.accessioned2021-06-23T14:38:04Z-
dc.date.available2021-06-23T14:38:04Z-
dc.date.issued2010-00-
dc.identifier.issn1812-8602-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/40540-
dc.description.abstractDrawing inference from current data could be more reliable if similar data based on previous studies are used. We propose a full Bayesian approach with the power prior to utilize these data. The power prior is constructed by raising the likelihood function of the historical data to the power a(0); where 0 <= a(0) <= 1. The power prior is a useful informative prior in Bayesian inference. We use the power prior to estimate regression coefficients and to calculate the accident reduction factors of some covariates including median strips and guardrails. We also compare our method with the empirical Bayes method. We demonstrate our results with several sets of real data. The data were collected for two rural national roads of Korea in the year 2002. The computations are executed with the Metropolis-Hastings algorithm which is a popular technique in the Markov chain and Monte Carlo methods.-
dc.format.extent13-
dc.language영어-
dc.language.isoENG-
dc.publisherHong Kong Society for Transportation Studies Limited-
dc.titleBayesian approach with the power prior for road safety analysis-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1080/18128600902929609-
dc.identifier.scopusid2-s2.0-77956402996-
dc.identifier.wosid000276102600004-
dc.identifier.bibliographicCitationTransportmetrica, v.6, no.1, pp 39 - 51-
dc.citation.titleTransportmetrica-
dc.citation.volume6-
dc.citation.number1-
dc.citation.startPage39-
dc.citation.endPage51-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassssci-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaTransportation-
dc.relation.journalWebOfScienceCategoryTransportation-
dc.relation.journalWebOfScienceCategoryTransportation Science & Technology-
dc.subject.keywordPlusDISTRIBUTIONS-
dc.subject.keywordPlusGEOMETRICS-
dc.subject.keywordAuthoraccident reduction effect-
dc.subject.keywordAuthorempirical Bayes method-
dc.subject.keywordAuthorhistorical data-
dc.subject.keywordAuthorMetropolis-Hastings algorithm-
dc.subject.keywordAuthorpower prior-
dc.identifier.urlhttps://www.tandfonline.com/doi/full/10.1080/18128600902929609-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > ERICA 수리데이터사이언스학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Seong Wook photo

Kim, Seong Wook
ERICA 소프트웨어융합대학 (ERICA 수리데이터사이언스학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE