Aluminum-GFRP hybrid square tube beam reinforced by a thin composite skin layer
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jung, Dal-Woo | - |
dc.contributor.author | Kim, Hyung-Jin | - |
dc.contributor.author | Choi, Nak-Sam | - |
dc.date.accessioned | 2021-06-23T15:03:07Z | - |
dc.date.available | 2021-06-23T15:03:07Z | - |
dc.date.issued | 2009-10 | - |
dc.identifier.issn | 1359-835X | - |
dc.identifier.issn | 1878-5840 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/40863 | - |
dc.description.abstract | Ultimate bending moments and energy-absorption capability of aluminum-glass fiber reinforced plastic (GFRP) hybrid tube beams were experimentally analyzed with particular focuses on effects of thin GFRP skin layer in relation to bending deformation behavior and fracture characteristics. Various hybrid tube beams were fabricated by inserting adhesive film between prepreg and metal layers and by aligning various composite ply angles. Under 3-point bending loads, aluminum-GFRP hybrid tube beams showed characteristic fracture processes according to the layup kinds of the skin layer in comparison to the virgin aluminum tube beams. In particular, the hybrid tube beams having a 0.5 mm thick [0 degrees/90 degrees](s) skin layer showed the largest improvement in specific maximum moment (about 67%) and in specific energy-absorption (29%). Consequently, there was an optimal thickness and layup of the composite skin layer in creating the best performance of the hybrid tubes. (C) 2009 Elsevier Ltd. All rights reserved. | - |
dc.format.extent | 8 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | ELSEVIER SCI LTD | - |
dc.title | Aluminum-GFRP hybrid square tube beam reinforced by a thin composite skin layer | - |
dc.type | Article | - |
dc.publisher.location | 영국 | - |
dc.identifier.doi | 10.1016/j.compositesa.2009.06.015 | - |
dc.identifier.scopusid | 2-s2.0-70249088291 | - |
dc.identifier.wosid | 000271373100005 | - |
dc.identifier.bibliographicCitation | COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, v.40, no.10, pp 1558 - 1565 | - |
dc.citation.title | COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING | - |
dc.citation.volume | 40 | - |
dc.citation.number | 10 | - |
dc.citation.startPage | 1558 | - |
dc.citation.endPage | 1565 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalWebOfScienceCategory | Engineering, Manufacturing | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Composites | - |
dc.subject.keywordPlus | EXTRUDED TUBES | - |
dc.subject.keywordPlus | BEHAVIOR | - |
dc.subject.keywordPlus | FRACTURE | - |
dc.subject.keywordAuthor | Hybrid | - |
dc.subject.keywordAuthor | Delamination | - |
dc.subject.keywordAuthor | Buckling | - |
dc.subject.keywordAuthor | Energy-absorption | - |
dc.identifier.url | https://www.sciencedirect.com/science/article/pii/S1359835X09001894?via%3Dihub | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.