Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

The growth and characterization of an InN layer on AlN/Si (111)

Full metadata record
DC Field Value Language
dc.contributor.authorKim, M. D.-
dc.contributor.authorPark, S. R.-
dc.contributor.authorOh, J. E.-
dc.contributor.authorKim, S. G.-
dc.contributor.authorYang, W. C.-
dc.contributor.authorKoo, Bun-Hei-
dc.date.accessioned2021-06-23T15:41:23Z-
dc.date.available2021-06-23T15:41:23Z-
dc.date.issued2009-03-
dc.identifier.issn0022-0248-
dc.identifier.issn1873-5002-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/41346-
dc.description.abstractThe variation of the strain and structural properties of InN layers grown by molecular beam epitaxy on AlN/Si(1 1 1) substrates were investigated using reflection high-energy electron diffraction (RHEED), atomic force microscopy, scanning electron microscopy, photoluminescence, and X-ray diffraction. The RHEED intensity, the thickness of the InN wetting layer, and the lattice constant of the InN during its initial growth stage were found to be most dependent on the indium flux. Although when using a high indium flux and high growth temperature, growth would be expected to follow the Volmer-Weber growth mode during the early growth stages, in the case of the nitrogen-rich conditions, the initial InN layer grows according to the Stranski-Krastanov mode. The emission peaks are present at 0.83 eV (1500 nm) and 0.79 eV (1569 nm) for the samples made using low and high indium fluxes, respectively. These results provide important information about single-crystal hexagonal InN. (C) 2008 Elsevier B.V. All rights reserved.-
dc.format.extent5-
dc.language영어-
dc.language.isoENG-
dc.publisherELSEVIER SCIENCE BV-
dc.titleThe growth and characterization of an InN layer on AlN/Si (111)-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1016/j.jcrysgro.2008.12.003-
dc.identifier.scopusid2-s2.0-63349103394-
dc.identifier.wosid000265659300094-
dc.identifier.bibliographicCitationJOURNAL OF CRYSTAL GROWTH, v.311, no.7, pp 2016 - 2020-
dc.citation.titleJOURNAL OF CRYSTAL GROWTH-
dc.citation.volume311-
dc.citation.number7-
dc.citation.startPage2016-
dc.citation.endPage2020-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaCrystallography-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryCrystallography-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusMOLECULAR-BEAM EPITAXY-
dc.subject.keywordPlusFUNDAMENTAL-BAND GAP-
dc.subject.keywordPlusSTRAIN-
dc.subject.keywordAuthorGrowth models-
dc.subject.keywordAuthorMolecular beam epitaxy-
dc.subject.keywordAuthorNitrides-
dc.subject.keywordAuthorSemiconducting III-V materials-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0022024808013535?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE