Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Numerical simulation of autogenous shrinkage in high-performance cement paste based on a multi-component hydration model

Full metadata record
DC Field Value Language
dc.contributor.authorLim, Seungmin-
dc.contributor.authorLee, Hanseung-
dc.contributor.authorWang, Xiaoyong-
dc.date.accessioned2021-06-23T18:40:38Z-
dc.date.available2021-06-23T18:40:38Z-
dc.date.created2021-01-22-
dc.date.issued2008-07-
dc.identifier.issn1013-9826-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/43065-
dc.description.abstractAutogenous shrinkage is the term for the bulk deformation of a closed, isothermal, cement-based material system not subjected to external forces. It is associated with the internal volume reduction of cement/water mixture in the course of the hydration process. However, addition of blended components to cement, especially such as fly ash or silica fume, for the high-performance concrete will lead to a densification of the microstructure. The autogenous shrinkage deformation will increase and the following autogenous shrinkage crack will do harm to durability of concrete structure. In this paper, numerical simulation is suggested to predict autogenous shrinkage of high performance cement paste. The simulation is originated from a multi-component hydration model. The numerical program considers the influence of water to cement ratio, curing temperature, particle size distribution, cement mineral components on hydration process and autogenous shrinkage. The prediction result agrees well with experiment result.-
dc.language영어-
dc.language.isoen-
dc.publisherTrans Tech Publications Ltd-
dc.titleNumerical simulation of autogenous shrinkage in high-performance cement paste based on a multi-component hydration model-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, Hanseung-
dc.identifier.doi10.4028/www.scientific.net/KEM.385-387.629-
dc.identifier.scopusid2-s2.0-54149085751-
dc.identifier.bibliographicCitationKey Engineering Materials, v.385, no.1, pp.629 - 632-
dc.relation.isPartOfKey Engineering Materials-
dc.citation.titleKey Engineering Materials-
dc.citation.volume385-
dc.citation.number1-
dc.citation.startPage629-
dc.citation.endPage632-
dc.type.rimsART-
dc.type.docTypeConference Paper-
dc.description.journalClass3-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassother-
dc.subject.keywordPlusCements-
dc.subject.keywordPlusComputer simulation-
dc.subject.keywordPlusDeformation-
dc.subject.keywordPlusFly ash-
dc.subject.keywordPlusHigh performance concrete-
dc.subject.keywordPlusHydration-
dc.subject.keywordPlusNumerical models-
dc.subject.keywordPlusParticle size-
dc.subject.keywordPlusParticle size analysis-
dc.subject.keywordPlusSilica fume-
dc.subject.keywordPlusAutogenous shrinkage-
dc.subject.keywordPlusCement based material-
dc.subject.keywordPlusCuring temperature-
dc.subject.keywordPlusDurability of concrete structure-
dc.subject.keywordPlusHigh performance cements-
dc.subject.keywordPlusHydration models-
dc.subject.keywordPlusInfluence of water-
dc.subject.keywordPlusNumerical programs-
dc.subject.keywordPlusShrinkage-
dc.subject.keywordAuthorAutogenous shrinkage-
dc.subject.keywordAuthorHigh-performance cement paste-
dc.subject.keywordAuthorMulti-components hydration model-
dc.subject.keywordAuthorNumerical simulation-
dc.identifier.urlhttps://www.scientific.net/KEM.385-387.629-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > MAJOR IN ARCHITECTURAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Han Seung photo

Lee, Han Seung
ERICA 공학대학 (MAJOR IN ARCHITECTURAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE