Hysteresis in a carbon nanotube based electroactive polymer microfiber actuator: Numerical Modeling
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sohn, Kiwon | - |
dc.contributor.author | Shin, Su Ryon | - |
dc.contributor.author | Park, Sang Jun | - |
dc.contributor.author | Kim, Seon Jeong | - |
dc.contributor.author | Yi, Byung-Ju | - |
dc.contributor.author | Han, Seog Young | - |
dc.contributor.author | Kim, Sun I. | - |
dc.date.accessioned | 2021-06-23T19:03:34Z | - |
dc.date.available | 2021-06-23T19:03:34Z | - |
dc.date.issued | 2007-11 | - |
dc.identifier.issn | 1533-4880 | - |
dc.identifier.issn | 1533-4899 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/43307 | - |
dc.description.abstract | Hysteretic behavior is an important consideration for smart electroactive polymer actuators in a wide variety of nano/micro-scale applications. We prepared an electroactive polymer actuator in the form of a microfiber, based on single-wall carbon nanotubes and polyaniline, and investigated the hysteretic characteristics of the actuator under electrical potential switching in a basic electrolyte solution. For actuation experiments, we measured the variation of the length of the carbon-nanotube-based electroactive polymer actuator, using an Aurora Scientific Inc. 300B Series muscle lever arm system, while electrical potentials ranging from 0.2 V to 0.65 V were applied. Based on the classical Preisach hysteresis model, we presented and validated a numerical model that described the hysteretic behavior of the carbon-nanotube-based electroactive polymer actuator. Inverse hysteretic behavior was also simulated using the model to demonstrate its capability to predict an input from a desired output. This numerical model of hysteresis could be an effective approach to micro-scale control of carbon-nanotube-based electroactive polymer actuators in potential applications. | - |
dc.format.extent | 6 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | American Scientific Publishers | - |
dc.title | Hysteresis in a carbon nanotube based electroactive polymer microfiber actuator: Numerical Modeling | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1166/jnn.2007.072 | - |
dc.identifier.scopusid | 2-s2.0-38449105953 | - |
dc.identifier.wosid | 000250576500063 | - |
dc.identifier.bibliographicCitation | Journal of Nanoscience and Nanotechnology, v.7, no.11, pp 3974 - 3979 | - |
dc.citation.title | Journal of Nanoscience and Nanotechnology | - |
dc.citation.volume | 7 | - |
dc.citation.number | 11 | - |
dc.citation.startPage | 3974 | - |
dc.citation.endPage | 3979 | - |
dc.type.docType | Article; Proceedings Paper | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.relation.journalWebOfScienceCategory | Physics, Condensed Matter | - |
dc.subject.keywordPlus | MAGNETORHEOLOGICAL DAMPERS | - |
dc.subject.keywordPlus | TRACKING CONTROL | - |
dc.subject.keywordPlus | COMPENSATION | - |
dc.subject.keywordPlus | IDENTIFICATION | - |
dc.subject.keywordPlus | MUSCLES | - |
dc.subject.keywordAuthor | carbon nanotube | - |
dc.subject.keywordAuthor | polyaniline | - |
dc.subject.keywordAuthor | electroactive polymer actuator | - |
dc.subject.keywordAuthor | hysteresis | - |
dc.identifier.url | https://www.ingentaconnect.com/content/asp/jnn/2007/00000007/00000011/art00063;jsessionid=1d9wpde0u6yx2.x-ic-live-03 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.