Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

An Assessment of Parallel Preconditioners for the Interior Sparse Generalized Eigenvalue Problems by CG-type Methods on an IBM Regatta Machine

Full metadata record
DC Field Value Language
dc.contributor.authorMa, Sangback-
dc.contributor.authorJang, Ho jong-
dc.date.accessioned2021-06-23T19:06:08Z-
dc.date.available2021-06-23T19:06:08Z-
dc.date.issued2007-09-
dc.identifier.issn1598-5857-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/43447-
dc.description.abstractComputing the interior spectrum of large sparse generalized eigenvalue problems Ax=λBx Ax=λBx , where A and b are large sparse and SPD(Symmetric Positive Definite), is often required in areas such as structural mechanics and quantum chemistry, to name a few. Recently, CG-type methods have been found useful and hence, very amenable to parallel computation for very large problems. Also, as in the case of linear systems proper choice of preconditioning is known to accelerate the rate of convergence. After the smallest eigenpair is found we use the orthogonal deflation technique to find the next m-1 eigenvalues, which is also suitable for parallelization. This offers advantages over Jacobi-Davidson methods with partial shifts, which requires re-computation of preconditioner matrx with new shifts. We consider as preconditioners Incomplete LU(ILU)(0) in two variants, ever-relaxation(SOR), and Point-symmetric SOR(SSOR). We set m to be 5. We conducted our experiments on matrices from discretizations of partial differential equations by finite difference method. The generated matrices has dimensions up to 4 million and total number of processors are 32. MPI(Message Passing Interface) library was used for interprocessor communications. Our results show that in general the Multi-Color ILU(0) gives the best performance.-
dc.format.extent9-
dc.language영어-
dc.language.isoENG-
dc.publisher한국전산응용수학회-
dc.titleAn Assessment of Parallel Preconditioners for the Interior Sparse Generalized Eigenvalue Problems by CG-type Methods on an IBM Regatta Machine-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.bibliographicCitationJournal of Applied Mathematics and Informatics, v.25, no.1-2, pp 435 - 443-
dc.citation.titleJournal of Applied Mathematics and Informatics-
dc.citation.volume25-
dc.citation.number1-2-
dc.citation.startPage435-
dc.citation.endPage443-
dc.identifier.kciidART001183767-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasskci-
dc.subject.keywordAuthorInterior generalized eigenvalue-
dc.subject.keywordAuthoriterative method-
dc.subject.keywordAuthorconjugate gradient-
dc.subject.keywordAuthorpreconditioning-
dc.subject.keywordAuthorparallel-
dc.subject.keywordAuthorIBM regatta-
dc.identifier.urlhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001183767-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF COMPUTING > SCHOOL OF COMPUTER SCIENCE > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE