Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Automatic extraction of salient objects using feature maps

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Ki tae-
dc.contributor.authorMoon, Young shik-
dc.date.accessioned2021-06-23T20:40:41Z-
dc.date.available2021-06-23T20:40:41Z-
dc.date.issued2007-04-
dc.identifier.issn1520-6149-
dc.identifier.issn2379-190X-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/44243-
dc.description.abstractIn this paper, we propose a technique for extracting salient objects in images using feature maps, regardless of the complexity of images and the position of objects. In order to extract salient, objects, the proposed method uses feature maps with edge and color information, We also propose a reference map created by integrating feature maps, and a combination map representing the boundaries of meaningful objects that is created by integrating the reference map and feature maps. Candidate object regions including, boundaries of objects from the combination map are extracted by convex hull algorithm. Finally, by applying a segmentation algorithm on the area of candidate regions, object regions and background regions are separated, and real object regions are extracted from the candidate object regions. Experimental results show that the proposed method extracts the salient objects efficiently, with 84.3% precision rate and 81.3% recall rate. © 2007 IEEE.-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE-
dc.titleAutomatic extraction of salient objects using feature maps-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/ICASSP.2007.365983-
dc.identifier.scopusid2-s2.0-34547525088-
dc.identifier.wosid000249040000155-
dc.identifier.bibliographicCitation2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07, v.1, pp I617 - I620-
dc.citation.title2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07-
dc.citation.volume1-
dc.citation.startPageI617-
dc.citation.endPageI620-
dc.type.docTypeConference Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaAcoustics-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaImaging Science & Photographic Technology-
dc.relation.journalWebOfScienceCategoryAcoustics-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryImaging Science & Photographic Technology-
dc.subject.keywordPlusComputational complexity-
dc.subject.keywordPlusImage analysis-
dc.subject.keywordPlusImage reconstruction-
dc.subject.keywordPlusImage segmentation-
dc.subject.keywordPlusCombination maps-
dc.subject.keywordPlusFeature maps-
dc.subject.keywordPlusReference maps-
dc.subject.keywordPlusSalient object extraction-
dc.subject.keywordPlusFeature extraction-
dc.subject.keywordAuthorCombination map-
dc.subject.keywordAuthorFeature map-
dc.subject.keywordAuthorReference map-
dc.subject.keywordAuthorSalient object extraction-
dc.subject.keywordAuthorSegmentation-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/4217155-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF COMPUTING > SCHOOL OF COMPUTER SCIENCE > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE