Interval type-2 fuzzy membership function design and its application to radial basis function neural networks
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Rhee, Frank chung hoon | - |
dc.contributor.author | Choi, Byung in | - |
dc.date.accessioned | 2021-06-23T20:41:33Z | - |
dc.date.available | 2021-06-23T20:41:33Z | - |
dc.date.issued | 2007-07 | - |
dc.identifier.issn | 1098-7584 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/44270 | - |
dc.description.abstract | Type-2 fuzzy sets has been shown to manage uncertainty more effectively than type-1 fuzzy sets in several pattern recognition applications [1]-[10]. However, computing with type-2 fuzzy sets can require high computational complexity since it involves numerous embedded type-2 fuzzy sets. To reduce the complexity, interval type-2 fuzzy sets can be used. In this paper, an interval type-2 fuzzy membership design method and its application to radial basis function (RBF) neural networks is proposed. Type-1 fuzzy memberships which are computed from the centroid of the interval type-2 fuzzy memberships are incorporated into the RBF neural network. The proposed membership assignment is shown to improve the classification performance of the RBF neural network since the uncertainty of pattern data are desirably controlled by interval type-2 fuzzy memberships. Experimental results for several data sets are given. © 2007 IEEE. | - |
dc.format.extent | 6 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | IEEE | - |
dc.title | Interval type-2 fuzzy membership function design and its application to radial basis function neural networks | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1109/FUZZY.2007.4295680 | - |
dc.identifier.scopusid | 2-s2.0-50249095757 | - |
dc.identifier.wosid | 000252371500351 | - |
dc.identifier.bibliographicCitation | IEEE International Conference on Fuzzy Systems, pp 1 - 6 | - |
dc.citation.title | IEEE International Conference on Fuzzy Systems | - |
dc.citation.startPage | 1 | - |
dc.citation.endPage | 6 | - |
dc.type.docType | Conference Paper | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Artificial Intelligence | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Theory & Methods | - |
dc.relation.journalWebOfScienceCategory | Engineering, Electrical & Electronic | - |
dc.subject.keywordPlus | Artificial intelligence | - |
dc.subject.keywordPlus | Attitude control | - |
dc.subject.keywordPlus | Chlorine compounds | - |
dc.subject.keywordPlus | Computational complexity | - |
dc.subject.keywordPlus | Feature extraction | - |
dc.subject.keywordPlus | Feedforward neural networks | - |
dc.subject.keywordPlus | Fuzzy logic | - |
dc.subject.keywordPlus | Fuzzy sets | - |
dc.subject.keywordPlus | Fuzzy systems | - |
dc.subject.keywordPlus | Image classification | - |
dc.subject.keywordPlus | Image segmentation | - |
dc.subject.keywordPlus | Membership functions | - |
dc.subject.keywordPlus | Neural networks | - |
dc.subject.keywordPlus | Pattern recognition | - |
dc.subject.keywordPlus | Radial basis function networks | - |
dc.subject.keywordPlus | Set theory | - |
dc.subject.keywordPlus | Vegetation | - |
dc.subject.keywordPlus | Classification performance | - |
dc.subject.keywordPlus | Data sets | - |
dc.subject.keywordPlus | Design methods | - |
dc.subject.keywordPlus | Fuzzy membership function | - |
dc.subject.keywordPlus | Fuzzy memberships | - |
dc.subject.keywordPlus | International conferences | - |
dc.subject.keywordPlus | Interval type-2 fuzzy sets | - |
dc.subject.keywordPlus | Pattern datum | - |
dc.subject.keywordPlus | Radial basis function neural networks | - |
dc.subject.keywordPlus | RBF neural network | - |
dc.subject.keywordPlus | Type-2 fuzzy sets | - |
dc.subject.keywordPlus | Fuzzy neural networks | - |
dc.identifier.url | https://ieeexplore.ieee.org/document/4295680 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.