Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

32 nm pattern collapse modeling with radial distance and rinse speed

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Jong-Sun-
dc.contributor.authorChang, Wook-
dc.contributor.authorPark, Seoung-Wook-
dc.contributor.authorOh, Hye-Keun-
dc.contributor.authorLee, Suk-Joo-
dc.contributor.authorKim, Sung-Hyuk-
dc.date.accessioned2021-06-23T20:43:52Z-
dc.date.available2021-06-23T20:43:52Z-
dc.date.issued2007-03-
dc.identifier.issn0277-786X-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/44358-
dc.description.abstractChemically amplified resist materials are now available to reach critical dimensions of the pattern close to 32 nm values. Pattern collapse is a very serious problem in fine patterning less than 32 nm critical dimension, because it decreases the yield. The pattern collapse is the pattern response to unbalanced capillary forces acting on the pattern walls during the spinning drying step after development process. Centrifugal force has not considered for pattern collapse modeling up to now, so that pattern collapse due to spinning is studied. In this study we investigate the 32 nm node pattern collapse mechanism with radial distance and rinse speed of dense patterns. In the process of creating the simulation tool, the rotating model is used. As rinse speed and radial distance are increased, critical aspect ratio is decreased. As a result, pattern collapse is increased.-
dc.format.extent7-
dc.language영어-
dc.language.isoENG-
dc.publisherSPIE-
dc.title32 nm pattern collapse modeling with radial distance and rinse speed-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1117/12.712220-
dc.identifier.scopusid2-s2.0-35148838609-
dc.identifier.wosid000247395600126-
dc.identifier.bibliographicCitationProceedings of SPIE - The International Society for Optical Engineering, v.6519, no.PART 2, pp 1 - 7-
dc.citation.titleProceedings of SPIE - The International Society for Optical Engineering-
dc.citation.volume6519-
dc.citation.numberPART 2-
dc.citation.startPage1-
dc.citation.endPage7-
dc.type.docTypeConference Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusCentrifugal pumps-
dc.subject.keywordPlusComputer simulation-
dc.subject.keywordPlusDrying-
dc.subject.keywordPlusProblem solving-
dc.subject.keywordPlusSpeed-
dc.subject.keywordPlusSpinning (fibers)-
dc.subject.keywordPlusCritical aspect ratio-
dc.subject.keywordPlusPattern collapse-
dc.subject.keywordPlusRadial distance-
dc.subject.keywordPlusRinse speed-
dc.subject.keywordPlusSpinning wafer-
dc.subject.keywordPlusPhotoresists-
dc.subject.keywordAuthorCritical aspect ratio-
dc.subject.keywordAuthorPattern collapse-
dc.subject.keywordAuthorRadial distance-
dc.subject.keywordAuthorRinse speed-
dc.subject.keywordAuthorSpinning wafer-
dc.identifier.urlhttps://www.spiedigitallibrary.org/conference-proceedings-of-spie/6519/1/32-nm-pattern-collapse-modeling-with-radial-distance-and-rinse/10.1117/12.712220.short-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > DEPARTMENT OF APPLIED PHYSICS > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE