Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Activation of de novo synthetic pathway of ceramides is responsible for the initiation of hydrogen peroxide induced apoptosis in HI-60 cells

Full metadata record
DC Field Value Language
dc.contributor.authorSon, Jung Hyun-
dc.contributor.authorYoo, Hye Hyun-
dc.contributor.authorKim, Dong-Hyun-
dc.date.accessioned2021-06-23T20:44:27Z-
dc.date.available2021-06-23T20:44:27Z-
dc.date.issued2007-08-
dc.identifier.issn1528-7394-
dc.identifier.issn1087-2620-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/44380-
dc.description.abstractSphingolipid metabolites in HL-60 cells were analyzed to gain an understanding of their roles in early events underlying hydrogen peroxide (H2O2)-induced apoptosis. Incubation of cells with H2O2 increased the intracellular levels of ceramides and sphinganine, but decreased those of ceramide 1-phosphates (ceramide 1-P) and sphingosine. The levels of sphingomyelins and sphingo- myelinase (SMase) activities were not affected by H2O2 treatment. These results were similar to the profiles induced by daunorubicin, an activator of serine palmitoyl CoA transferase (SPT), suggesting that H2O2 stimulated the de novo synthetic pathway of ceramides. L-cycloserine and fumonisin B, (FBI), specific inhibitors of de novo ceramide biosynthesis, suppressed the elevation of ceramides and sphinganine induced by 112021 which consequently reduced apoptotic cell death. Collectively, these results demonstrated that H2O2 increased the intracellular concentrations of ceramides via activation of a de novo biosynthetic pathway, and the enhanced ceramides might initiate apoptosis in HL-60 cells.-
dc.format.extent9-
dc.language영어-
dc.language.isoENG-
dc.publisherTaylor & Francis-
dc.titleActivation of de novo synthetic pathway of ceramides is responsible for the initiation of hydrogen peroxide induced apoptosis in HI-60 cells-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1080/15287390701434364-
dc.identifier.scopusid2-s2.0-34547156711-
dc.identifier.wosid000248414300009-
dc.identifier.bibliographicCitationJournal of Toxicology and Environmental Health - Part A, v.70, no.15-16, pp 1310 - 1318-
dc.citation.titleJournal of Toxicology and Environmental Health - Part A-
dc.citation.volume70-
dc.citation.number15-16-
dc.citation.startPage1310-
dc.citation.endPage1318-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEnvironmental Sciences & Ecology-
dc.relation.journalResearchAreaPublic, Environmental & Occupational Health-
dc.relation.journalResearchAreaToxicology-
dc.relation.journalWebOfScienceCategoryEnvironmental Sciences-
dc.relation.journalWebOfScienceCategoryPublic, Environmental & Occupational Health-
dc.relation.journalWebOfScienceCategoryToxicology-
dc.subject.keywordPlusSTRESS-INDUCED APOPTOSIS-
dc.subject.keywordPlusSPHINGOSINE 1-PHOSPHATE-
dc.subject.keywordPlusOXIDATIVE STRESS-
dc.subject.keywordPlusSPHINGOMYELIN HYDROLYSIS-
dc.subject.keywordPlusENDOTHELIAL-CELLS-
dc.subject.keywordPlusLLC-PK1 CELLS-
dc.subject.keywordPlusHL-60 CELLS-
dc.subject.keywordPlusGENERATION-
dc.subject.keywordPlusDEATH-
dc.subject.keywordPlusDIFFERENTIATION-
dc.identifier.urlhttps://www.tandfonline.com/doi/full/10.1080/15287390701434364-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF PHARMACY > DEPARTMENT OF PHARMACY > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yoo, Hye Hyun photo

Yoo, Hye Hyun
COLLEGE OF PHARMACY (DEPARTMENT OF PHARMACY)
Read more

Altmetrics

Total Views & Downloads

BROWSE