Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Real-time path planning strategies for real world application using Random Access Sequence

Full metadata record
DC Field Value Language
dc.contributor.authorKwak, Jaehyuk-
dc.contributor.authorLim, Joonhong-
dc.date.accessioned2021-06-23T21:37:04Z-
dc.date.available2021-06-23T21:37:04Z-
dc.date.issued2006-09-
dc.identifier.issn0302-9743-
dc.identifier.issn1611-3349-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/44695-
dc.description.abstractMany researches on path planning and obstacle avoidance for the fundamentals of mobile robot have been done. Although many solutions help finding a optimal path, those can be applied to real world only under constrained condition, which means that it is difficult to find a universal algorithm. Moreover, a complicated computation to obtain an optimal path induces the time delay so that a robot can not avoid moving obstacles. In this paper, we propose the algorithm of path planning and obstacle avoidance using Random Access Sequence(RAS) methodology. In the proposed scheme, the cell decomposition is make first and cell neighbors are assigned as sequence code, then the path with minimum length is selected.-
dc.format.extent4-
dc.language영어-
dc.language.isoENG-
dc.publisherSpringer Verlag-
dc.titleReal-time path planning strategies for real world application using Random Access Sequence-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.scopusid2-s2.0-33750303607-
dc.identifier.wosid000241892100102-
dc.identifier.bibliographicCitationLecture Notes in Computer Science, v.4222, no.LNCS-II, pp 801 - 804-
dc.citation.titleLecture Notes in Computer Science-
dc.citation.volume4222-
dc.citation.numberLNCS-II-
dc.citation.startPage801-
dc.citation.endPage804-
dc.type.docTypeArticle; Proceedings Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Theory & Methods-
dc.subject.keywordPlusAlgorithms-
dc.subject.keywordPlusCollision avoidance-
dc.subject.keywordPlusConstraint theory-
dc.subject.keywordPlusMobile robots-
dc.subject.keywordPlusRandom processes-
dc.subject.keywordPlusReal time systems-
dc.identifier.urlhttps://link.springer.com/chapter/10.1007/11881223_102-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE