Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Crowdsourced truth discovery in the presence of hierarchies for knowledge fusion

Full metadata record
DC Field Value Language
dc.contributor.authorJung, Woohwan-
dc.contributor.authorKim, Younghoon-
dc.contributor.authorShim, Kyuseok-
dc.date.accessioned2021-06-22T11:01:22Z-
dc.date.available2021-06-22T11:01:22Z-
dc.date.issued2019-03-
dc.identifier.issn2367-2005-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/4530-
dc.description.abstractExisting works for truth discovery in categorical data usually assume that claimed values are mutually exclusive and only one among them is correct. However, many claimed values are not mutually exclusive even for functional predicates due to their hierarchical structures. Thus, we need to consider the hierarchical structure to effectively estimate the trustworthiness of the sources and infer the truths. We propose a probabilistic model to utilize the hierarchical structures and an inference algorithm to find the truths. In addition, in the knowledge fusion, the step of automatically extracting information from unstructured data (e.g., text) generates a lot of false claims. To take advantages of the human cognitive abilities in understanding unstructured data, we utilize crowdsourcing to refine the result of the truth discovery. We propose a task assignment algorithm to maximize the accuracy of the inferred truths. The performance study with real-life datasets confirms the effectiveness of our truth inference and task assignment algorithms. © 2019 Copyright held by the owner/author(s).-
dc.format.extent12-
dc.language영어-
dc.language.isoENG-
dc.publisherOpenProceedings.org-
dc.titleCrowdsourced truth discovery in the presence of hierarchies for knowledge fusion-
dc.typeArticle-
dc.publisher.location독일-
dc.identifier.doi10.5441/002/edbt.2019.19-
dc.identifier.scopusid2-s2.0-85064948070-
dc.identifier.bibliographicCitationAdvances in Database Technology - EDBT 2019, pp 205 - 216-
dc.citation.titleAdvances in Database Technology - EDBT 2019-
dc.citation.startPage205-
dc.citation.endPage216-
dc.type.docTypeConference Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusDatabase systems-
dc.subject.keywordPlusInference engines-
dc.subject.keywordPlusExtracting information-
dc.subject.keywordPlusHierarchical structures-
dc.subject.keywordPlusHuman cognitive abilities-
dc.subject.keywordPlusInference algorithm-
dc.subject.keywordPlusPerformance study-
dc.subject.keywordPlusProbabilistic modeling-
dc.subject.keywordPlusReal life datasets-
dc.subject.keywordPlusUnstructured data-
dc.subject.keywordPlusCrowdsourcing-
dc.subject.keywordAuthorComputer Science - Databases-
dc.subject.keywordAuthorI.2.6-
dc.identifier.urlhttp://arxiv.org/abs/1904.10217-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF COMPUTING > DEPARTMENT OF ARTIFICIAL INTELLIGENCE > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Young hoon photo

Kim, Young hoon
ERICA 소프트웨어융합대학 (DEPARTMENT OF ARTIFICIAL INTELLIGENCE)
Read more

Altmetrics

Total Views & Downloads

BROWSE