Adaptive video watermarking utilizing video characteristics in 3D-DCT domain
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Park, Hyun | - |
dc.contributor.author | Lee, Sung hyun | - |
dc.contributor.author | Moon, Young shik | - |
dc.date.accessioned | 2021-06-23T22:39:40Z | - |
dc.date.available | 2021-06-23T22:39:40Z | - |
dc.date.issued | 2006-11 | - |
dc.identifier.issn | 0302-9743 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/45386 | - |
dc.description.abstract | In this paper, we propose an adaptive blind video watermarking method using video characteristics based on human visual system (HVS) in three-dimensional discrete cosine transform (3D-DCT) domain. In order to optimize the weight factors for watermarking, we classify the patterns of 3D-DCT cubes and the types of video segments by using the texture and motion information of 3D-DCT cubes. Then we embed an optimal watermark into the mid-range coefficients of 3D-DCT cubes by using the trained optimal weight factors. Experimental results show that the proposed method achieves better performance in terms of invisibility and robustness than the previous method under the various possible attacks such as MPEG compression, frame dropping, frame insertion and frame swapping to experimental videos. © Springer-Verlag Berlin Heidelberg 2006. | - |
dc.format.extent | 10 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Springer Verlag | - |
dc.title | Adaptive video watermarking utilizing video characteristics in 3D-DCT domain | - |
dc.type | Article | - |
dc.publisher.location | 독일 | - |
dc.identifier.doi | 10.1007/11922841_32 | - |
dc.identifier.scopusid | 2-s2.0-33845444844 | - |
dc.identifier.wosid | 000243131200032 | - |
dc.identifier.bibliographicCitation | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v.4283 LNCS, pp 397 - 406 | - |
dc.citation.title | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | - |
dc.citation.volume | 4283 LNCS | - |
dc.citation.startPage | 397 | - |
dc.citation.endPage | 406 | - |
dc.type.docType | Conference Paper | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | other | - |
dc.subject.keywordPlus | Blind source separation | - |
dc.subject.keywordPlus | Cosine transforms | - |
dc.subject.keywordPlus | Image compression | - |
dc.subject.keywordPlus | Image quality | - |
dc.subject.keywordPlus | Optimization | - |
dc.subject.keywordPlus | Security of data | - |
dc.subject.keywordPlus | Adaptive video watermarking | - |
dc.subject.keywordPlus | MPEG compression | - |
dc.subject.keywordPlus | Optimal weight factors | - |
dc.subject.keywordPlus | Digital watermarking | - |
dc.identifier.url | https://link.springer.com/chapter/10.1007/11922841_32 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.