Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Adaptive video watermarking utilizing video characteristics in 3D-DCT domain

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Hyun-
dc.contributor.authorLee, Sung hyun-
dc.contributor.authorMoon, Young shik-
dc.date.accessioned2021-06-23T22:39:40Z-
dc.date.available2021-06-23T22:39:40Z-
dc.date.issued2006-11-
dc.identifier.issn0302-9743-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/45386-
dc.description.abstractIn this paper, we propose an adaptive blind video watermarking method using video characteristics based on human visual system (HVS) in three-dimensional discrete cosine transform (3D-DCT) domain. In order to optimize the weight factors for watermarking, we classify the patterns of 3D-DCT cubes and the types of video segments by using the texture and motion information of 3D-DCT cubes. Then we embed an optimal watermark into the mid-range coefficients of 3D-DCT cubes by using the trained optimal weight factors. Experimental results show that the proposed method achieves better performance in terms of invisibility and robustness than the previous method under the various possible attacks such as MPEG compression, frame dropping, frame insertion and frame swapping to experimental videos. © Springer-Verlag Berlin Heidelberg 2006.-
dc.format.extent10-
dc.language영어-
dc.language.isoENG-
dc.publisherSpringer Verlag-
dc.titleAdaptive video watermarking utilizing video characteristics in 3D-DCT domain-
dc.typeArticle-
dc.publisher.location독일-
dc.identifier.doi10.1007/11922841_32-
dc.identifier.scopusid2-s2.0-33845444844-
dc.identifier.wosid000243131200032-
dc.identifier.bibliographicCitationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v.4283 LNCS, pp 397 - 406-
dc.citation.titleLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)-
dc.citation.volume4283 LNCS-
dc.citation.startPage397-
dc.citation.endPage406-
dc.type.docTypeConference Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassother-
dc.subject.keywordPlusBlind source separation-
dc.subject.keywordPlusCosine transforms-
dc.subject.keywordPlusImage compression-
dc.subject.keywordPlusImage quality-
dc.subject.keywordPlusOptimization-
dc.subject.keywordPlusSecurity of data-
dc.subject.keywordPlusAdaptive video watermarking-
dc.subject.keywordPlusMPEG compression-
dc.subject.keywordPlusOptimal weight factors-
dc.subject.keywordPlusDigital watermarking-
dc.identifier.urlhttps://link.springer.com/chapter/10.1007/11922841_32-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF COMPUTING > SCHOOL OF COMPUTER SCIENCE > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE