Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Crack Detection Method on Surface of Tunnel Lining

Full metadata record
DC Field Value Language
dc.contributor.authorHan, Jeong hoon-
dc.contributor.authorCho, Yong chae-
dc.contributor.authorLee, Ho gyeng-
dc.contributor.authorYang, Hyeon seok-
dc.contributor.authorJeong, Woo jin-
dc.contributor.authorMoon, Young shik-
dc.date.accessioned2021-06-22T11:01:30Z-
dc.date.available2021-06-22T11:01:30Z-
dc.date.issued2019-06-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/4543-
dc.description.abstractCrack detection on surface of tunnel lining is one of the most important tasks in concrete structure inspection field. Naked eye inspection method is widely used in general but it needs huge resources. To solve the issue, many methods have been proposed based on convolutional neural network but they show disconnected crack results with thin or blurred crack image. To overcome this problem, we propose a multiscale feature fusion method for crack detection. Experientially, results show that performance of our method was improved over the previous methods. © 2019 IEEE.-
dc.format.extent3-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleCrack Detection Method on Surface of Tunnel Lining-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/ITC-CSCC.2019.8793450-
dc.identifier.scopusid2-s2.0-85071427187-
dc.identifier.wosid000494762800036-
dc.identifier.bibliographicCitation34th International Technical Conference on Circuits/Systems, Computers and Communications, ITC-CSCC 2019, pp 134 - 136-
dc.citation.title34th International Technical Conference on Circuits/Systems, Computers and Communications, ITC-CSCC 2019-
dc.citation.startPage134-
dc.citation.endPage136-
dc.type.docTypeConference Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassother-
dc.subject.keywordPlusComputer circuits-
dc.subject.keywordPlusConcretes-
dc.subject.keywordPlusConvolution-
dc.subject.keywordPlusNeural networks-
dc.subject.keywordPlusTunnel linings-
dc.subject.keywordPlusConcrete inspection-
dc.subject.keywordPlusConvolutional neural network-
dc.subject.keywordPlusCrack image-
dc.subject.keywordPlusDetection methods-
dc.subject.keywordPlusInspection methods-
dc.subject.keywordPlusMulti-scale features-
dc.subject.keywordPlusStructure inspection-
dc.subject.keywordPlusTunnel inspection-
dc.subject.keywordPlusCrack detection-
dc.subject.keywordAuthorConcrete Inspection-
dc.subject.keywordAuthorConvolutional Neural Network-
dc.subject.keywordAuthorCrack Detection-
dc.subject.keywordAuthorTunnel Inspection-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/8793450-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF COMPUTING > SCHOOL OF COMPUTER SCIENCE > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE