Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A numerical study of the thermal entrance effect in miniature thermal conductivity detectors

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Young-Min-
dc.contributor.authorKim, Woo-Seung-
dc.contributor.authorChun, Won-Gee-
dc.date.accessioned2021-06-23T23:38:43Z-
dc.date.available2021-06-23T23:38:43Z-
dc.date.issued2005-05-
dc.identifier.issn0145-7632-
dc.identifier.issn1521-0537-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/45998-
dc.description.abstractThe microchannel flow in miniature TCDs (thermal conductivity detectors) is investigated numerically. Solutions based on the boundary-layer approximation are not very accurate near the channel inlet for low Reynolds numbers. As a result the full Navier-Stokes equations were solved to analyze the gas flow in a miniature TCD. The effects of channel size and inlet and boundary conditions on the heat transfer rate were examined. When the gas stream is not preheated, the distance for a miniature TCD to reach the conduction-dominant region is approximately two to three times the thermal entry length of a constant property pipe flow subject to a uniform thermal boundary condition. If the gas inlet temperature is in the vicinity of the mean gas temperature in the conduction-dominant region, the entrance length is much shorter and very close to that of a constant property pipe flow with uniform surface temperature or heat flux.-
dc.format.extent8-
dc.language영어-
dc.language.isoENG-
dc.publisherTaylor & Francis-
dc.titleA numerical study of the thermal entrance effect in miniature thermal conductivity detectors-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1080/01457630590916293-
dc.identifier.scopusid2-s2.0-17444364520-
dc.identifier.wosid000228269200008-
dc.identifier.bibliographicCitationHeat Transfer Engineering, v.26, no.4, pp 65 - 72-
dc.citation.titleHeat Transfer Engineering-
dc.citation.volume26-
dc.citation.number4-
dc.citation.startPage65-
dc.citation.endPage72-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaThermodynamics-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMechanics-
dc.relation.journalWebOfScienceCategoryThermodynamics-
dc.relation.journalWebOfScienceCategoryEngineering, Mechanical-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.subject.keywordPlusGAS-CHROMATOGRAPHY SYSTEM-
dc.subject.keywordPlusNITROGEN-DIOXIDE-
dc.subject.keywordPlusFLOW-
dc.subject.keywordPlusSIMULATION-
dc.subject.keywordPlusSEPARATE-
dc.subject.keywordPlusAMMONIA-
dc.identifier.urlhttps://www.tandfonline.com/doi/full/10.1080/01457630590916293-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MECHANICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE