Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Analysis on Mechanical-Strain Induced Bias-Stress Instabilities for the Flexible InGaZnO Thin Film Transistors with Different Channel Geometries

Full metadata record
DC Field Value Language
dc.contributor.authorJang, Hye won-
dc.contributor.authorKim, Ki hwan-
dc.contributor.authorOh, Saeroonter-
dc.contributor.authorYoon, Sung min-
dc.date.accessioned2021-06-22T11:02:08Z-
dc.date.available2021-06-22T11:02:08Z-
dc.date.issued2019-07-
dc.identifier.issn0000-0000-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/4605-
dc.description.abstractChannel geometry effects on the gate bias-stress instabilities of the flexible amorphous InGaZnO (IGZO) thin film transistors (TFTs) fabricated on ultra-thin polyimide films with a thickness of 1.2 μm were investigated. The flexible IGZO TFT exhibited a saturation mobility of 13.2 cm2/Vs and a subthreshold swing of 0.19 V/dec. Excellent positive bias stress (PBS) stabilities could be successfully obtained at a gate bias of 20 V even under the mechanically-strained conditions. Alternatively, at a higher bias stress of 35 V, the turn-on voltage shifts at a bending radius of 1 mm during the PBS tests were estimated for the TFTs with channel widths of 20 μm and 160 μm to be 0.7 and 4.9 V, respectively. Channel geometry-dependent PBS instability was suggested to originate from the stress concentration along the bending axis, which was verified by the evaluation results measured at various conditions and the TCAD simulations. © 2019 FTFMD.-
dc.format.extent4-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleAnalysis on Mechanical-Strain Induced Bias-Stress Instabilities for the Flexible InGaZnO Thin Film Transistors with Different Channel Geometries-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.23919/AM-FPD.2019.8830599-
dc.identifier.scopusid2-s2.0-85073230530-
dc.identifier.wosid000589508400041-
dc.identifier.bibliographicCitationAM-FPD 2019 - 26th International Workshop on Active-Matrix Flatpanel Displays and Devices: TFT Technologies and FPD Materials, Proceedings, pp 1 - 4-
dc.citation.titleAM-FPD 2019 - 26th International Workshop on Active-Matrix Flatpanel Displays and Devices: TFT Technologies and FPD Materials, Proceedings-
dc.citation.startPage1-
dc.citation.endPage4-
dc.type.docTypeConference Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryComputer Science, Hardware & Architecture-
dc.subject.keywordPlusBending tests-
dc.subject.keywordPlusFilm thickness-
dc.subject.keywordPlusFlat panel displays-
dc.subject.keywordPlusGallium compounds-
dc.subject.keywordPlusGeometry-
dc.subject.keywordPlusSemiconducting indium compounds-
dc.subject.keywordPlusThin film circuits-
dc.subject.keywordPlusThin films-
dc.subject.keywordPlusZinc compounds-
dc.subject.keywordPlusAmorphous InGaZnO-
dc.subject.keywordPlusEvaluation results-
dc.subject.keywordPlusMechanical strain-
dc.subject.keywordPlusSaturation mobility-
dc.subject.keywordPlusStrained condition-
dc.subject.keywordPlusSubthreshold swing-
dc.subject.keywordPlusThin-film transistor (TFTs)-
dc.subject.keywordPlusTurn-on voltages-
dc.subject.keywordPlusThin film transistors-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/8830599/-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE