Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Serialized keypoint estimation using body part segmentation

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Ho gyeong-
dc.contributor.authorCho, Yong chae-
dc.contributor.authorHan, Jeong hoon-
dc.contributor.authorJeong, Woo jin-
dc.contributor.authorPark, Ye jin-
dc.contributor.authorMoon, Young shik-
dc.date.accessioned2021-06-22T11:02:10Z-
dc.date.available2021-06-22T11:02:10Z-
dc.date.issued2019-08-
dc.identifier.issn0000-0000-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/4610-
dc.description.abstractHuman pose estimation is a topic of interest in the field of computer vision. Once we precisely predict where the human body is, we can further use that information to perform high-level actions such as action recognition or behavior prediction. In this paper, we focus on finding keypoints of human along with body part segmentations that surround keypoints. After roughly finding body part segmentations, we hope to refine accurate keypoint from it. We used Stacked Hourglass model, which is often used in pose estimation problems, as the backbone and further attached model to predict body part segmentation. We also tested several networks to reduce unwanted side effect that occurs when using keypoints and body part segmentation together. © 2019 Association for Computing Machinery.-
dc.format.extent5-
dc.language영어-
dc.language.isoENG-
dc.publisherAssociation for Computing Machinery-
dc.titleSerialized keypoint estimation using body part segmentation-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1145/3378891.3378901-
dc.identifier.scopusid2-s2.0-85081123026-
dc.identifier.wosid000697993700004-
dc.identifier.bibliographicCitationACM International Conference Proceeding Series, pp 15 - 19-
dc.citation.titleACM International Conference Proceeding Series-
dc.citation.startPage15-
dc.citation.endPage19-
dc.type.docTypeConference Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassother-
dc.subject.keywordPlusForecasting-
dc.subject.keywordPlusAction recognition-
dc.subject.keywordPlusBehavior prediction-
dc.subject.keywordPlusBody parts-
dc.subject.keywordPlusHuman bodies-
dc.subject.keywordPlusHuman pose estimations-
dc.subject.keywordPlusKeypoints-
dc.subject.keywordPlusPose estimation-
dc.subject.keywordPlusSide effect-
dc.subject.keywordPlusBehavioral research-
dc.subject.keywordAuthorBody part segmentation-
dc.subject.keywordAuthorHuman pose estimation-
dc.subject.keywordAuthorKeypoints-
dc.identifier.urlhttps://dl.acm.org/doi/10.1145/3378891.3378901-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF COMPUTING > SCHOOL OF COMPUTER SCIENCE > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE