Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

The changepoint model for statistical process control

Full metadata record
DC Field Value Language
dc.contributor.authorHawkins, Douglas M.-
dc.contributor.authorQiu,Peihua-
dc.contributor.authorKang,Changwook-
dc.date.accessioned2021-06-24T00:42:34Z-
dc.date.available2021-06-24T00:42:34Z-
dc.date.created2021-01-21-
dc.date.issued2003-10-
dc.identifier.issn0022-4065-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/46661-
dc.description.abstractStatistical process control (SPC) requires statistical methodologies that detect changes in the pattern of data over time. The common methodologies, such as Shewhart, cumulative sum (cusum), and exponentially weighted moving average (EWMA) charting, require the in-control values of the process parameters, but these are rarely known accurately. Using estimated parameters, the run length behavior changes randomly from one realization to another, making it impossible to control the run length behavior of any particular chart. A suitable methodology for detecting and diagnosing step changes based on imperfect process knowledge is the unknown-parameter changepoint formulation. Long recognized as a Phase I analysis tool, we argue that it is also highly effective in allowing the user to progress seamlessly from the start of Phase I data gathering through Phase II SPC monitoring. Despite not requiring specification of the post-change process parameter values, its performance is never far short of that of the optimal cusum chart which requires this knowledge, and it is far superior for shifts away from the cusum shift for which the cusum chart is optimal. As another benefit, while changepoint methods are designed for step changes that persist, they are also competitive with the Shewhart chart, the chart of choice for isolated non-sustained special causes.-
dc.language영어-
dc.language.isoen-
dc.publisherAmerican Society of Quality-
dc.titleThe changepoint model for statistical process control-
dc.typeArticle-
dc.contributor.affiliatedAuthorKang,Changwook-
dc.identifier.doi10.1080/00224065.2003.11980233-
dc.identifier.scopusid2-s2.0-1642519908-
dc.identifier.wosid000185658100003-
dc.identifier.bibliographicCitationJournal of Quality Technology, v.35, no.4, pp.355 - 366-
dc.relation.isPartOfJournal of Quality Technology-
dc.citation.titleJournal of Quality Technology-
dc.citation.volume35-
dc.citation.number4-
dc.citation.startPage355-
dc.citation.endPage366-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaOperations Research & Management Science-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryEngineering, Industrial-
dc.relation.journalWebOfScienceCategoryOperations Research & Management Science-
dc.relation.journalWebOfScienceCategoryStatistics & Probability-
dc.subject.keywordPlusCHANGE-POINT-
dc.subject.keywordPlusCONTROL CHARTS-
dc.subject.keywordPlusINFERENCE-
dc.subject.keywordPlus(X)OVER-BAR-
dc.subject.keywordPlusSEQUENCE-
dc.subject.keywordPlusLOCATION-
dc.subject.keywordPlusLIMITS-
dc.subject.keywordPlusTESTS-
dc.subject.keywordPlusSHIFT-
dc.subject.keywordAuthorcumulative sum control charts-
dc.subject.keywordAuthorexponentially weighted moving average control charts-
dc.subject.keywordAuthorShewhart control charts-
dc.identifier.urlhttps://www.tandfonline.com/doi/abs/10.1080/00224065.2003.11980233-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF INDUSTRIAL & MANAGEMENT ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE