Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Microwave performance of recessed gate Al0.2Ga0.8N/GaN HFETs fabricated using a photoelectrochemical etching technique

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Jong wook-
dc.contributor.authorLee, Jae seung-
dc.contributor.authorLee, Won sang-
dc.contributor.authorShin, Jin ho-
dc.contributor.authorJung, Doo chan-
dc.contributor.authorShin, Moo whan-
dc.contributor.authorKim, Chang seok-
dc.contributor.authorOh, Jae eung-
dc.contributor.authorLee, Jung hee-
dc.contributor.authorHahm, Sung ho-
dc.date.accessioned2021-06-24T01:02:30Z-
dc.date.available2021-06-24T01:02:30Z-
dc.date.created2021-01-21-
dc.date.issued2002-07-
dc.identifier.issn0921-5107-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/46804-
dc.description.abstractThis is the first report on the fabrication of AlGaN/GaN HFETs which has a recessed gate structure achieved by the photoelectrochemical etching technique. Optimal photoelectrochemical wet etching conditions were stabilized and applied for the device fabrication. The DC and large-signal RF performance of thus fabricated device is presented as well. The ohmic contacts fabricated on the n(+)-GaN layer exhibited contact resistivity of mid 10(-6) Omega cm(2) and resulted in a linear I-V characteristics during an operation of device. The maximum drain-source current density is approximately 174 mA mm(-1) (at V-GS = 1 V), and the transconductance of approximately 68 mS mm(-1) (at V-GS = -1.1 V, V-DS = 6 V). The maximum frequency is measured to be approximately 31 GHz, and an RF power of 84 mW mm(-1) at 1.8 GHz for a 1400-mum wide gate device. (C) 2002 Elsevier Science B.V. All rights reserved.-
dc.language영어-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE SA-
dc.titleMicrowave performance of recessed gate Al0.2Ga0.8N/GaN HFETs fabricated using a photoelectrochemical etching technique-
dc.typeArticle-
dc.contributor.affiliatedAuthorOh, Jae eung-
dc.identifier.doi10.1016/S0921-5107(02)00165-4-
dc.identifier.scopusid2-s2.0-0036641427-
dc.identifier.wosid000177087100014-
dc.identifier.bibliographicCitationMATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, v.95, no.1, pp.73 - 76-
dc.relation.isPartOfMATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY-
dc.citation.titleMATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY-
dc.citation.volume95-
dc.citation.number1-
dc.citation.startPage73-
dc.citation.endPage76-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusGAN-
dc.subject.keywordPlusHEMTS-
dc.subject.keywordAuthorGaN-
dc.subject.keywordAuthorHFET-
dc.subject.keywordAuthorphotoelectrochemical etching-
dc.subject.keywordAuthormaximum frequency-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0921510702001654?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE