Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Probabilistic prediction of Burr patterns of 1045 carbon steel in face milling

Full metadata record
DC Field Value Language
dc.contributor.authorPark, IW-
dc.contributor.authorAhn, Suneung-
dc.contributor.authorDornfeld,David Alan-
dc.date.accessioned2021-06-24T01:04:04Z-
dc.date.available2021-06-24T01:04:04Z-
dc.date.issued2002-08-
dc.identifier.issn1091-0344-
dc.identifier.issn1532-2483-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/46860-
dc.description.abstractFace milling burrs in ductile materials such as 1045 carbon steel exhibit three distinct burr patterns: uniform, wavy, and secondary burrs. It is found that the three burr patterns are dependent on the in-plane exit angle, undeformed chip ratio, and undeformed chip area at the exit stage of cut. Empirical equations, representing the burr transition curves from the uniform to wavy burr and wavy to secondary burr, are found. Based on the empirical relationships, a probabilistic model, in which the operational Bayesian modeling approach is adopted to include the empirical equations, is derived for burr prediction.-
dc.format.extent20-
dc.language영어-
dc.language.isoENG-
dc.publisherMarcel Dekker Inc.-
dc.titleProbabilistic prediction of Burr patterns of 1045 carbon steel in face milling-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1081/MST-120005954-
dc.identifier.scopusid2-s2.0-0036393478-
dc.identifier.wosid000178127900001-
dc.identifier.bibliographicCitationMachining Science and Technology, v.6, no.2, pp 151 - 170-
dc.citation.titleMachining Science and Technology-
dc.citation.volume6-
dc.citation.number2-
dc.citation.startPage151-
dc.citation.endPage170-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryEngineering, Manufacturing-
dc.relation.journalWebOfScienceCategoryEngineering, Mechanical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordAuthorBurr formation-
dc.subject.keywordAuthorface milling-
dc.subject.keywordAuthorempirical equations-
dc.subject.keywordAuthorBayesian probability modeling-
dc.identifier.urlhttps://www.tandfonline.com/doi/full/10.1081/MST-120005954-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF INDUSTRIAL & MANAGEMENT ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE