Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Ultrahigh Conductivity and Superior Interfacial Adhesion of a Nanostructured, Photonic-Sintered Copper Membrane for Printed Flexible Hybrid Electronics

Full metadata record
DC Field Value Language
dc.contributor.authorKwon, Young-Tae-
dc.contributor.authorKim, Yun-Soung-
dc.contributor.authorLee, Yongkuk-
dc.contributor.authorKwon, Shinjae-
dc.contributor.authorLim, Minseob-
dc.contributor.authorSong, Yoseb-
dc.contributor.authorChoa, Yong-Ho-
dc.contributor.authorYeo, Woon-Hong-
dc.date.accessioned2021-06-22T11:03:11Z-
dc.date.available2021-06-22T11:03:11Z-
dc.date.created2021-01-21-
dc.date.issued2018-12-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/4706-
dc.description.abstractInkjet-printed electronics using metal particles typically lack electrical conductivity and interfacial adhesion with an underlying substrate. To address the inherent issues of printed materials, this Research Article introduces advanced materials and processing methodologies. Enhanced adhesion of the inkjet-printed copper (Cu) on a flexible polyimide film is achieved by using a new surface modification technique, a nanostructured self-assembled monolayer (SAM) of (3-mercaptopropyl)trimethoxysilane. A standardized adhesion test reveals the superior adhesion strength (1192.27 N/m) of printed Cu on the polymer film, while maintaining extreme mechanical flexibility proven by 100 000 bending cycles. In addition to the increased adhesion, the nanostructured SAM treatment on printed Cu prevents formation of native oxide layers. The combination of the newly synthesized Cu ink and associated sintering technique with an intense pulsed ultraviolet and visible light absorption enables ultrahigh conductivity of printed Cu (2.3 X 10(-6) Omega.cm), which is the highest electrical conductivity reported to date. The comprehensive materials engineering technologies offer highly reliable printing of Cu patterns for immediate use in wearable flexible hybrid electronics. In vivo demonstration of printed, skin-conformal Cu electrodes indicates a very low skin-electrode impedance (<50 k Omega) without a conductive gel and successfully measures three types of biopotentials, including electrocardiograms, electromyograms, and electrooculograms.-
dc.language영어-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.titleUltrahigh Conductivity and Superior Interfacial Adhesion of a Nanostructured, Photonic-Sintered Copper Membrane for Printed Flexible Hybrid Electronics-
dc.typeArticle-
dc.contributor.affiliatedAuthorChoa, Yong-Ho-
dc.identifier.doi10.1021/acsami.8b17164-
dc.identifier.scopusid2-s2.0-85058572072-
dc.identifier.wosid000454383500086-
dc.identifier.bibliographicCitationACS APPLIED MATERIALS & INTERFACES, v.10, no.50, pp.44071 - 44079-
dc.relation.isPartOfACS APPLIED MATERIALS & INTERFACES-
dc.citation.titleACS APPLIED MATERIALS & INTERFACES-
dc.citation.volume10-
dc.citation.number50-
dc.citation.startPage44071-
dc.citation.endPage44079-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusSELF-ASSEMBLED MONOLAYERS-
dc.subject.keywordPlusCU INK-
dc.subject.keywordPlusPOLYMER-
dc.subject.keywordPlusPATTERNS-
dc.subject.keywordPlusDECOMPOSITION-
dc.subject.keywordPlusSUBSTRATE-
dc.subject.keywordPlusFILM-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusPOLYIMIDE-
dc.subject.keywordPlusPROMOTER-
dc.subject.keywordAuthorphotonic sintering-
dc.subject.keywordAuthorprinted Cu membrane-
dc.subject.keywordAuthorenhanced conductivity-
dc.subject.keywordAuthorinterfacial adhesion-
dc.subject.keywordAuthorflexible hybrid electronics-
dc.identifier.urlhttps://pubs.acs.org/doi/10.1021/acsami.8b17164-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher CHOA, YONG HO photo

CHOA, YONG HO
ERICA 공학대학 (DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE