Particle filtering based remaining useful life prediction for electromagnetic coil insulation
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Guo, Haifeng | - |
dc.contributor.author | Xu, Aidong | - |
dc.contributor.author | Wang, Kai | - |
dc.contributor.author | Sun, Yue | - |
dc.contributor.author | Han, Xiaojia | - |
dc.contributor.author | Hong, Seung ho | - |
dc.contributor.author | Yu, Mengmeng | - |
dc.date.accessioned | 2021-06-22T04:26:18Z | - |
dc.date.available | 2021-06-22T04:26:18Z | - |
dc.date.issued | 2021-01 | - |
dc.identifier.issn | 1424-8220 | - |
dc.identifier.issn | 1424-3210 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/492 | - |
dc.description.abstract | Electromagnetic coils are one of the key components of many systems. Their insulation failure can have severe effects on the systems in which coils are used. This paper focuses on insulation degradation monitoring and remaining useful life (RUL) prediction of electromagnetic coils. First, insulation degradation characteristics are extracted from coil high-frequency electrical parameters. Second, health indicator is defined based on insulation degradation characteristics to indicate the health degree of coil insulation. Finally, an insulation degradation model is constructed, and coil insulation RUL prediction is performed by particle filtering. Thermal accelerated degradation experiments are performed to validate the RUL prediction performance. The proposed method presents opportunities for predictive maintenance of systems that incorporate coils. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. | - |
dc.format.extent | 14 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | MDPI AG | - |
dc.title | Particle filtering based remaining useful life prediction for electromagnetic coil insulation | - |
dc.type | Article | - |
dc.publisher.location | 스위스 | - |
dc.identifier.doi | 10.3390/s21020473 | - |
dc.identifier.scopusid | 2-s2.0-85099386969 | - |
dc.identifier.wosid | 000611702700001 | - |
dc.identifier.bibliographicCitation | Sensors (Switzerland), v.21, no.2, pp 1 - 14 | - |
dc.citation.title | Sensors (Switzerland) | - |
dc.citation.volume | 21 | - |
dc.citation.number | 2 | - |
dc.citation.startPage | 1 | - |
dc.citation.endPage | 14 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalResearchArea | Instruments & Instrumentation | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Analytical | - |
dc.relation.journalWebOfScienceCategory | Engineering, Electrical & Electronic | - |
dc.relation.journalWebOfScienceCategory | Instruments & Instrumentation | - |
dc.subject.keywordPlus | Forecasting | - |
dc.subject.keywordPlus | Monte Carlo methods | - |
dc.subject.keywordPlus | Accelerated degradation | - |
dc.subject.keywordPlus | Electrical parameter | - |
dc.subject.keywordPlus | Electromagnetic coils | - |
dc.subject.keywordPlus | Health indicators | - |
dc.subject.keywordPlus | Insulation degradation | - |
dc.subject.keywordPlus | Insulation failures | - |
dc.subject.keywordPlus | Particle Filtering | - |
dc.subject.keywordPlus | Remaining useful life predictions | - |
dc.subject.keywordPlus | Insulation | - |
dc.subject.keywordAuthor | Insulation degradation | - |
dc.subject.keywordAuthor | Insulation failure | - |
dc.subject.keywordAuthor | Inter-turn short | - |
dc.subject.keywordAuthor | PF | - |
dc.subject.keywordAuthor | Prognostics | - |
dc.subject.keywordAuthor | Resonant frequency | - |
dc.identifier.url | https://www.mdpi.com/1424-8220/21/2/473 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.