Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Interfacial and mechanical properties of liquid crystalline elastomer nanocomposites with grafted Au nanoparticles: A molecular dynamics study

Authors
Kim, H.Choi, J.
Issue Date
Mar-2021
Publisher
Elsevier Ltd
Keywords
Grafted nanoparticles; Interface; Liquid crystalline elastomer; Nanocomposites
Citation
Polymer, v.218
Indexed
SCIE
SCOPUS
Journal Title
Polymer
Volume
218
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/509
DOI
10.1016/j.polymer.2021.123525
ISSN
0032-3861
Abstract
Synthesizing surface-grafted Au nanoparticles (grafted-AuNPs) for incorporation into a liquid crystalline elastomer (LCE) matrix yields high contents of nanoparticles that are chemically compatible and soluble in the matrix. To investigate the change in the internal microstructure by inserting grafted-AuNPs and the mechanical role of the interfaces in the LCE/Au nanocomposites, all-atom molecular dynamics simulations were conducted. The results suggest that the insertion of the grafted-AuNP disrupts the LCE mesogen arrangement, especially in the interfacial area. Additionally, the strain energy density distributed to each molecular component revealed that the grafted unit on the side of the LCE matrix forms a highly entangled network with a semi-rigid microstructure and enables high load transfer efficiency. By contrast, a ductile grafted layer formed on the side of the AuNP surface acts as a cushion, which allows the AuNP to exist in the unloading state. Furthermore, the curvature of the inserted AuNPs is crucial in changing the mechanical and structural properties of the LCE matrix phase. © 2021 Elsevier Ltd
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MECHANICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE