Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

New Dark Area Sensitive Tone Mapping for Deep Learning Based Traffic Sign Recognition

Full metadata record
DC Field Value Language
dc.contributor.authorKhan, Jameel Ahmed-
dc.contributor.authorYeo, Donghoon-
dc.contributor.authorShin, Hyunchul-
dc.date.accessioned2021-06-22T11:22:11Z-
dc.date.available2021-06-22T11:22:11Z-
dc.date.created2021-01-21-
dc.date.issued2018-11-
dc.identifier.issn1424-8220-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/5176-
dc.description.abstractIn this paper, we propose a new Intelligent Traffic Sign Recognition (ITSR) system with illumination preprocessing capability. Our proposed Dark Area Sensitive Tone Mapping (DASTM) technique can enhance the illumination of only dark regions of an image with little impact on bright regions. We used this technique as a pre-processing module for our new traffic sign recognition system. We combined DASTM with a TS detector, an optimized version of YOLOv3 for the detection of three classes of traffic signs. We trained ITSR on a dataset of Korean traffic signs with prohibitory, mandatory, and danger classes. We achieved Mean Average Precision (MAP) value of 90.07% (previous best result was 86.61%) on challenging Korean Traffic Sign Detection (KTSD) dataset and 100% on German Traffic Sign Detection Benchmark (GTSDB). Result comparisons of ITSR with latest D-Patches, TS detector, and YOLOv3 show that our new ITSR significantly outperforms in recognition performance.-
dc.language영어-
dc.language.isoen-
dc.publisherMDPI-
dc.titleNew Dark Area Sensitive Tone Mapping for Deep Learning Based Traffic Sign Recognition-
dc.typeArticle-
dc.contributor.affiliatedAuthorShin, Hyunchul-
dc.identifier.doi10.3390/s18113776-
dc.identifier.scopusid2-s2.0-85056275789-
dc.identifier.wosid000451598900186-
dc.identifier.bibliographicCitationSENSORS, v.18, no.11-
dc.relation.isPartOfSENSORS-
dc.citation.titleSENSORS-
dc.citation.volume18-
dc.citation.number11-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaInstruments & Instrumentation-
dc.relation.journalWebOfScienceCategoryChemistry, Analytical-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryInstruments & Instrumentation-
dc.subject.keywordAuthorKorean Traffic Sign Detection-
dc.subject.keywordAuthorDark Area Sensitive Tone Mapping (DASTM)-
dc.subject.keywordAuthorclassical tone mapping-
dc.subject.keywordAuthorluminance enhancement-
dc.identifier.urlhttps://www.mdpi.com/1424-8220/18/11/3776-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE