A time-sensitive networking (TSN) simulation model based on OMNET++
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jiang, J. | - |
dc.contributor.author | Li, Y. | - |
dc.contributor.author | Hong, S.H. | - |
dc.contributor.author | Xu, A. | - |
dc.contributor.author | Wang, K. | - |
dc.date.accessioned | 2021-06-22T11:42:01Z | - |
dc.date.available | 2021-06-22T11:42:01Z | - |
dc.date.created | 2021-01-22 | - |
dc.date.issued | 2018-08 | - |
dc.identifier.issn | 0000-0000 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/5716 | - |
dc.description.abstract | Industrial and automation control systems require that data be delivered in a highly predictable manner in terms of time. Time-sensitive Networking (TSN), an extension of the Ethernet, is a set of protocols developed and maintained by the IEEE 802.1 Task Group; the protocols deal with time synchronization, traffic scheduling, and network configuration, etc. TSN yields promising solutions for real-time and deterministic networks. Here, we develop a TSN simulation model based on OMNET++; we model a TSN-enabled switch that schedules traffic using gate control lists (GCLs). Simulation verified that the model guaranteed deterministic end-to-end latency. © 2018 IEEE. | - |
dc.language | 영어 | - |
dc.language.iso | en | - |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | - |
dc.title | A time-sensitive networking (TSN) simulation model based on OMNET++ | - |
dc.type | Article | - |
dc.contributor.affiliatedAuthor | Hong, S.H. | - |
dc.identifier.doi | 10.1109/ICMA.2018.8484302 | - |
dc.identifier.scopusid | 2-s2.0-85056340765 | - |
dc.identifier.bibliographicCitation | Proceedings of 2018 IEEE International Conference on Mechatronics and Automation, ICMA 2018, pp.643 - 648 | - |
dc.relation.isPartOf | Proceedings of 2018 IEEE International Conference on Mechatronics and Automation, ICMA 2018 | - |
dc.citation.title | Proceedings of 2018 IEEE International Conference on Mechatronics and Automation, ICMA 2018 | - |
dc.citation.startPage | 643 | - |
dc.citation.endPage | 648 | - |
dc.type.rims | ART | - |
dc.type.docType | Conference Paper | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | Automation | - |
dc.subject.keywordPlus | Deterministic | - |
dc.subject.keywordPlus | OMNET | - |
dc.subject.keywordPlus | Real time | - |
dc.subject.keywordPlus | Simulation model | - |
dc.subject.keywordPlus | Time-sensitive Networking (TSN) | - |
dc.subject.keywordPlus | IEEE Standards | - |
dc.subject.keywordAuthor | Deterministic | - |
dc.subject.keywordAuthor | OMNET++ | - |
dc.subject.keywordAuthor | Real-Time | - |
dc.subject.keywordAuthor | Schedule Traffic | - |
dc.subject.keywordAuthor | Simulation Model | - |
dc.subject.keywordAuthor | Time-sensitive Networking (TSN) | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.