Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Generalised kernel weighted fuzzy C-means clustering algorithm with local information

Full metadata record
DC Field Value Language
dc.contributor.authorMemon, Kashif Hussain-
dc.contributor.authorLee, Dong-Ho-
dc.date.accessioned2021-06-22T11:43:30Z-
dc.date.available2021-06-22T11:43:30Z-
dc.date.issued2018-06-
dc.identifier.issn0165-0114-
dc.identifier.issn1872-6801-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/5863-
dc.description.abstractTo improve the performance of segmentation for the images corrupted by noise, many variants of standard fuzzy C-means (FCM) clustering algorithm have been proposed that incorporate the local spatial neighbourhood information to perform image segmentation. Among them, the kernel weighted fuzzy local information C-means(KWFLICM) algorithm gives robust to noise image segmentation results by using local spatial image neighbourhood information, it is limited to one-dimensional input data i.e. image intensity. In this paper, we propose a generalisation of KWFLICM (GKWFLICM) that is applicable to M-dimensional input data sets. The proposed algorithm incorporates neighbourhood information among the M-dimensional data, which mitigates the disadvantages of the standard FCM clustering algorithm (sensitive to noise and outliers, poor performance for differently sized clusters and for different density clusters) and greatly improves the clustering performance. Experiments have been performed on several noisy and non-noisy data sets, as well as natural and real-world images, to demonstrate the effectiveness, efficiency, and robustness to noise of the GKWFLICM algorithm by comparing it to kernel fuzzy C-means (KFCM), kernel possibilistic fuzzy C-means (KPFCM), fuzzylocal information C-means(FLICM), and KWFLICM. (C) 2018 Elsevier B.V. All rights reserved.-
dc.format.extent18-
dc.language영어-
dc.language.isoENG-
dc.publisherELSEVIER SCIENCE BV-
dc.titleGeneralised kernel weighted fuzzy C-means clustering algorithm with local information-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1016/j.fss.2018.01.019-
dc.identifier.scopusid2-s2.0-85041715987-
dc.identifier.wosid000429308900004-
dc.identifier.bibliographicCitationFUZZY SETS AND SYSTEMS, v.340, pp 91 - 108-
dc.citation.titleFUZZY SETS AND SYSTEMS-
dc.citation.volume340-
dc.citation.startPage91-
dc.citation.endPage108-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryComputer Science, Theory & Methods-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.relation.journalWebOfScienceCategoryStatistics & Probability-
dc.subject.keywordPlusIMAGE SEGMENTATION-
dc.subject.keywordPlusSEARCH-
dc.subject.keywordAuthorKernel fuzzy c-means-
dc.subject.keywordAuthorEnhanced clustering performance-
dc.subject.keywordAuthorRobustness to noise and outliers-
dc.subject.keywordAuthorNeighbourhood for higher dimensional input data-
dc.subject.keywordAuthorLocal similarity-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0165011418300551?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher LEE, DONG HO photo

LEE, DONG HO
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE