Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Application of principal component analysis (PCA) to the assessment of parameter correlations in the partial-nitrification process using aerobic granular sludge

Full metadata record
DC Field Value Language
dc.contributor.authorCui, Fenghao-
dc.contributor.authorKim, Minkyung-
dc.contributor.authorPark, Chul-
dc.contributor.authorKim, Dokyun-
dc.contributor.authorMo, Kyung-
dc.contributor.authorKim, Moonil-
dc.date.accessioned2021-06-22T04:43:20Z-
dc.date.available2021-06-22T04:43:20Z-
dc.date.issued2021-06-
dc.identifier.issn0301-4797-
dc.identifier.issn1095-8630-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/611-
dc.description.abstractFor the first time, principal component analysis (PCA) was used to extract relevant information hidden in the partial-nitrification process using aerobic granular sludge. The objectives of this research are (a) to determine total ammonia nitrogen (TAN), total nitrite nitrogen (NO2–N), nitrate nitrogen (NO3–N), and other water quality parameters; (b) to identify the diversity of nitrification and denitrification bacterial community of wastewater samples during the partial-nitrification process using aerobic granular sludge and; (c) to analyze the correlation of available parameters using PCA. The nitrite accumulation ratio was determined from TAN, NO2–N, and NO3–N. Other water quality parameters were mixed liquor volatile suspended solids (MLVSS), alkalinity, total nitrogen (TN) and sludge volume index (SVI), pH, and dissolved oxygen (DO). The identification of bacterial community was conducted using 16S rRNA gene-based pyrosequencing by GS Junior Sequencing system. The water quality parameters were computed for PCA using software MATLAB. A nitrite accumulation ratio (NAR) between 0.55 and 0.85 was determined while maintaining the aerobic granular sludge's compact and dense structure. The PCA was used to reduce the data dimensionality from the original 8 variables to 2 principal components explaining 75% of the total data variance. Applying PCA to the data analysis in biological wastewater treatment can support detecting data anomalies and separating useful information from unwanted interferences. © 2021 Elsevier Ltd-
dc.format.extent9-
dc.language영어-
dc.language.isoENG-
dc.publisherAcademic Press-
dc.titleApplication of principal component analysis (PCA) to the assessment of parameter correlations in the partial-nitrification process using aerobic granular sludge-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1016/j.jenvman.2021.112408-
dc.identifier.scopusid2-s2.0-85103342347-
dc.identifier.wosid000643639100007-
dc.identifier.bibliographicCitationJournal of Environmental Management, v.288, pp 1 - 9-
dc.citation.titleJournal of Environmental Management-
dc.citation.volume288-
dc.citation.startPage1-
dc.citation.endPage9-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEnvironmental Sciences & Ecology-
dc.relation.journalWebOfScienceCategoryEnvironmental Sciences-
dc.subject.keywordPlusammonia-
dc.subject.keywordPlusdissolved oxygen-
dc.subject.keywordPlusnitrate-
dc.subject.keywordPlusnitrite-
dc.subject.keywordPlusnitrogen derivative-
dc.subject.keywordPlusRNA 16S-
dc.subject.keywordPlusactivated sludge-
dc.subject.keywordPluscorrelation-
dc.subject.keywordPlusdenitrification-
dc.subject.keywordPlusdissolved oxygen-
dc.subject.keywordPlusgenetic analysis-
dc.subject.keywordPlusnitrification-
dc.subject.keywordPlusparameter estimation-
dc.subject.keywordPlusprincipal component analysis-
dc.subject.keywordPlussludge-
dc.subject.keywordPluswastewater-
dc.subject.keywordPluswastewater treatment-
dc.subject.keywordPluswater quality-
dc.subject.keywordPlusaccumulation ratio-
dc.subject.keywordPlusaerobic granular sludge-
dc.subject.keywordPlusalkalinity-
dc.subject.keywordPlusArticle-
dc.subject.keywordPlusclinical assessment-
dc.subject.keywordPluscontrolled study-
dc.subject.keywordPluscorrelation analysis-
dc.subject.keywordPlusdata analysis-
dc.subject.keywordPlusdata analysis software-
dc.subject.keywordPlusdenitrification-
dc.subject.keywordPlusgranular sludge-
dc.subject.keywordPlusliquid-
dc.subject.keywordPlusmicrobial community-
dc.subject.keywordPlusmixed liquor volatile suspended solid-
dc.subject.keywordPlusnitrification-
dc.subject.keywordPlusnonhuman-
dc.subject.keywordPlusprincipal component analysis-
dc.subject.keywordPluspyrosequencing-
dc.subject.keywordPlusreactor operation-
dc.subject.keywordPlussludge volume index-
dc.subject.keywordPlusstatistical parameters-
dc.subject.keywordPlussuspended particulate matter-
dc.subject.keywordPluswaste water management-
dc.subject.keywordPluswastewater-
dc.subject.keywordPluswater quality-
dc.subject.keywordPluswater sampling-
dc.subject.keywordPlusBacteria (microorganisms)-
dc.subject.keywordAuthorAerobic granular sludge-
dc.subject.keywordAuthorMicrobial communities-
dc.subject.keywordAuthorNitrogen removal-
dc.subject.keywordAuthorPartial-nitrification-
dc.subject.keywordAuthorPrincipal component analysis-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0301479721004709?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Moon il photo

Kim, Moon il
ERICA 공학대학 (DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE