Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Enhanced Liquid Transport on a Highly Scalable, Cost-Effective, and Flexible 3D Topological Liquid Capillary Diode

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Minki-
dc.contributor.authorOh, Junho-
dc.contributor.authorLim, Hyuneui-
dc.contributor.authorLee, Jinkee-
dc.date.accessioned2021-06-22T04:43:34Z-
dc.date.available2021-06-22T04:43:34Z-
dc.date.issued2021-05-
dc.identifier.issn1616-301X-
dc.identifier.issn1616-3028-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/631-
dc.description.abstractDirectional liquid-transport surfaces have various applications, such as, open microfluidic devices, fog collection, oil-water separation, and surface lubrication. However, current liquid-transport surfaces are expensive, complicated to manufacture, and lack scalability. Moreover, they exhibit low transport speeds and distances. In this study, a laser cutter is used to fabricate scalable, low-cost unidirectional liquid-transporting surfaces with enhanced transport speed and distance using polymeric materials. Cutting and engraving methods are used to create a liquid capillary diode comprising 3D wedge shapes, thereby obtaining an appropriate pressure gradient and liquid pinning. The developed liquid capillary diode exhibits the fastest transport speed (3-17.7 mm s(-1)) reported so far, and a large normalized distance (L/R: transport distance/radius of dispensed droplet). The transport distance increases with the square root of time under various contact angles and liquid viscosities, which agree well with the theoretical scaling results obtained using the modified Washburn model. Additionally, the flexible liquid capillary diode operates adequately even when bent with the maximum curvature of 0.1 mm(-1). The results provide better design guidelines for 3D topological liquid-transport surfaces for various applications.-
dc.format.extent9-
dc.language영어-
dc.language.isoENG-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleEnhanced Liquid Transport on a Highly Scalable, Cost-Effective, and Flexible 3D Topological Liquid Capillary Diode-
dc.typeArticle-
dc.publisher.location독일-
dc.identifier.doi10.1002/adfm.202011288-
dc.identifier.scopusid2-s2.0-85102773604-
dc.identifier.wosid000630610100001-
dc.identifier.bibliographicCitationADVANCED FUNCTIONAL MATERIALS, v.31, no.21, pp 1 - 9-
dc.citation.titleADVANCED FUNCTIONAL MATERIALS-
dc.citation.volume31-
dc.citation.number21-
dc.citation.startPage1-
dc.citation.endPage9-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordAuthordirectional liquid transport-
dc.subject.keywordAuthorlaser cutter-
dc.subject.keywordAuthorliquid capillary diode-
dc.identifier.urlhttps://onlinelibrary.wiley.com/doi/10.1002/adfm.202011288-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MECHANICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Oh, Junho photo

Oh, Junho
ERICA 공학대학 (DEPARTMENT OF MECHANICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE