Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

ClusterFetch: A Lightweight Prefetcher for Intensive Disk Reads

Full metadata record
DC Field Value Language
dc.contributor.authorRyu, Junhee-
dc.contributor.authorLee, Dongeun-
dc.contributor.authorShin, Kang G.-
dc.contributor.authorKang, Kyungtae-
dc.date.accessioned2021-06-22T12:21:31Z-
dc.date.available2021-06-22T12:21:31Z-
dc.date.issued2018-02-
dc.identifier.issn0018-9340-
dc.identifier.issn1557-9956-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/6786-
dc.description.abstractBy overlapping disk accesses with computation-intensive operations, prefetching can reduce delays in launching an application and in loading significant amounts of data while the application is running. The key to effective prefetching is making the tradeoff between the mining accuracy of selecting relevant blocks, and the time to decide those blocks. To address this problem, we propose a new prefetcher called ClusterFetch. In its learning mode, ClusterFetch detects periods of intensive disk accesses by monitoring the speed at which read requests are queued; it re-organizes these reads and locates the file opened by the application just before each such period. During subsequent runs of the same application, ClusterFetch prefetches the data associated with the opening of a "trigger" file. Our experimental results show that ClusterFetch implemented in Linux can reduce the application launch time by up to 41.3 percent and the loading time by up to 38.2 percent, while taking up less than 200 KB of main memory.-
dc.format.extent7-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE COMPUTER SOC-
dc.titleClusterFetch: A Lightweight Prefetcher for Intensive Disk Reads-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TC.2017.2748939-
dc.identifier.scopusid2-s2.0-85029175638-
dc.identifier.wosid000422753800010-
dc.identifier.bibliographicCitationIEEE TRANSACTIONS ON COMPUTERS, v.67, no.2, pp 284 - 290-
dc.citation.titleIEEE TRANSACTIONS ON COMPUTERS-
dc.citation.volume67-
dc.citation.number2-
dc.citation.startPage284-
dc.citation.endPage290-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryComputer Science, Hardware & Architecture-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.subject.keywordPlusClustering algorithms-
dc.subject.keywordPlusComputer operating systems-
dc.subject.keywordPlusCorrelation methods-
dc.subject.keywordPlusLibraries-
dc.subject.keywordPlusLinux-
dc.subject.keywordPlusComputation intensives-
dc.subject.keywordPlusLearning mode-
dc.subject.keywordPlusLoading time-
dc.subject.keywordPlusMain memory-
dc.subject.keywordPlusMemory management-
dc.subject.keywordPlusPrefetches-
dc.subject.keywordPlusPrefetching-
dc.subject.keywordAuthorDisk prefetching-
dc.subject.keywordAuthordisk read bursts detection-
dc.subject.keywordAuthorquick application loading-
dc.subject.keywordAuthoruser-perceived latency improvement-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/8025580-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF COMPUTING > DEPARTMENT OF ARTIFICIAL INTELLIGENCE > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kang, Kyung tae photo

Kang, Kyung tae
ERICA 소프트웨어융합대학 (DEPARTMENT OF ARTIFICIAL INTELLIGENCE)
Read more

Altmetrics

Total Views & Downloads

BROWSE