Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Nearest neighbor search with locally weighted linear regression for heartbeat classification

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Juyoung-
dc.contributor.authorBhuiyan, Md Zakirul Alam-
dc.contributor.authorKang, Mingon-
dc.contributor.authorSon, Junggab-
dc.contributor.authorKang, Kyungtae-
dc.date.accessioned2021-06-22T12:21:42Z-
dc.date.available2021-06-22T12:21:42Z-
dc.date.issued2018-02-
dc.identifier.issn1432-7643-
dc.identifier.issn1433-7479-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/6801-
dc.description.abstractAutomatic interpretation of electrocardiograms provides a noninvasive and inexpensive technique for analyzing the heart activity of patients with a range of cardiac conditions. We propose a method that combines locally weighted linear regression with nearest neighbor search for heartbeat detection and classification in the management of non-life-threatening arrhythmia. In the proposed method, heartbeats are detected and their features are found using the Pan-Tompkins algorithm; then, they are classified by locally weighted linear regression on their nearest neighbors in a training set. The results of evaluation on data from the MIT-BIH arrhythmia database indicate that the proposed method has a sensitivity of 93.68 %, a positive predictive value of 96.62 %, and an accuracy of 98.07 % for type-oriented evaluation; and a sensitivity of 74.15 %, a positive predictive value of 72.5 %, and an accuracy of 88.69 % for patient-oriented evaluation. These results are comparable to those from existing search schemes and contribute to the systematic design of automatic heartbeat classification systems for clinical decision support.-
dc.format.extent12-
dc.language영어-
dc.language.isoENG-
dc.publisherSPRINGER-
dc.titleNearest neighbor search with locally weighted linear regression for heartbeat classification-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1007/s00500-016-2410-9-
dc.identifier.scopusid2-s2.0-84992129632-
dc.identifier.wosid000426566200014-
dc.identifier.bibliographicCitationSOFT COMPUTING, v.22, no.4, pp 1225 - 1236-
dc.citation.titleSOFT COMPUTING-
dc.citation.volume22-
dc.citation.number4-
dc.citation.startPage1225-
dc.citation.endPage1236-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.subject.keywordPlusECG MORPHOLOGY-
dc.subject.keywordAuthorHeartbeat classification-
dc.subject.keywordAuthorElectrocardiogram monitoring-
dc.subject.keywordAuthorLocally weighted linear regression-
dc.subject.keywordAuthorNearest neighbor search-
dc.identifier.urlhttps://link.springer.com/article/10.1007/s00500-016-2410-9-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF COMPUTING > DEPARTMENT OF ARTIFICIAL INTELLIGENCE > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kang, Kyung tae photo

Kang, Kyung tae
ERICA 소프트웨어융합대학 (DEPARTMENT OF ARTIFICIAL INTELLIGENCE)
Read more

Altmetrics

Total Views & Downloads

BROWSE