Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Uncertain fuzzy self-organization based clustering: interval type-2 fuzzy approach to adaptive resonance theory

Full metadata record
DC Field Value Language
dc.contributor.authorMajeed, Shakaiba-
dc.contributor.authorGupta, Aditya-
dc.contributor.authorRaj, Desh-
dc.contributor.authorRhee, Frank Chung-Hoon-
dc.date.accessioned2021-06-22T12:22:54Z-
dc.date.available2021-06-22T12:22:54Z-
dc.date.issued2018-01-
dc.identifier.issn0020-0255-
dc.identifier.issn1872-6291-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/6922-
dc.description.abstractConventional unsupervised learning algorithms require knowledge of the desired number of clusters beforehand. Even if such knowledge is not required in advance, empirical selection of the parameter values may limit the adaptive capability of the algorithm, thereby restricting the clustering performance. An inherent uncertainty in the number and size of clusters requires integration of fuzzy sets into a clustering algorithm. In this paper, we propose a type-1 (T1) fuzzy ART method that adaptively selects the vigilance parameter value, which is critical in determining the network dynamics. This results in improved clustering performance due to the added flexibility in dynamic selection of the number of clusters with the use of fuzzy sets. To further manage the uncertainty associated with memberships, we extend the proposed T1 fuzzy ART with adaptive vigilance to an interval type-2 (IT2) fuzzy ART method. Type reduction and defuzzification are then performed using the KM algorithm to obtain a defuzzified vigilance parameter value. We evaluate our proposed methods on several data sets to validate their effectiveness. (C) 2017 Elsevier Inc. All rights reserved.-
dc.format.extent22-
dc.language영어-
dc.language.isoENG-
dc.publisherELSEVIER SCIENCE INC-
dc.titleUncertain fuzzy self-organization based clustering: interval type-2 fuzzy approach to adaptive resonance theory-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1016/j.ins.2017.09.062-
dc.identifier.scopusid2-s2.0-85030724454-
dc.identifier.wosid000414889900005-
dc.identifier.bibliographicCitationINFORMATION SCIENCES, v.424, pp 69 - 90-
dc.citation.titleINFORMATION SCIENCES-
dc.citation.volume424-
dc.citation.startPage69-
dc.citation.endPage90-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.subject.keywordPlusNEURAL-NETWORKS-
dc.subject.keywordPlusART-
dc.subject.keywordPlusRECOGNITION-
dc.subject.keywordPlusCLASSIFICATION-
dc.subject.keywordPlusARCHITECTURE-
dc.subject.keywordAuthorAdaptive resonance theory-
dc.subject.keywordAuthorFuzzy ART-
dc.subject.keywordAuthorUnsupervised learning-
dc.subject.keywordAuthorInterval type-2 fuzzy clustering-
dc.subject.keywordAuthorVigilance parameter-
dc.subject.keywordAuthorType reduction-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0020025516320850?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Rhee, Chung Hoon Frank photo

Rhee, Chung Hoon Frank
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE