Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

License plate detection and recognition algorithm for vehicle black box

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Jung hwan-
dc.contributor.authorKim, Sun kyu-
dc.contributor.authorLee, Sang hyuk-
dc.contributor.authorLee, Tae min-
dc.contributor.authorLim, Joonhong-
dc.date.accessioned2021-06-22T13:01:44Z-
dc.date.available2021-06-22T13:01:44Z-
dc.date.created2021-01-22-
dc.date.issued2018-
dc.identifier.issn0000-0000-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/7867-
dc.description.abstractAlmost every vehicle has currently installed black box since the stored images by black box can be used to investigate the exact cause of the accident. One of the most important aspects in an accident investigation is the license plate detection and recognition as the license plate has information about the driver and car. This paper presents a novel algorithm for license plate detection and recognition using black box image. The proposed license plate recognition system is divided into three stages: license plate detection, individual number and character extraction, and number and character recognition. The Gaussian blur filter is used to remove noise in the image and then we detect the license plate edge using modified Canny algorithm. Second, we determine license plate candidate image using morphology and support vector machine. Finally, we recognize the numbers and characters using k-nearest neighbor classifier. The experimental study results indicate that the license plate detection and recognition algorithm has been successfully implemented. © 2017 IEEE.-
dc.language영어-
dc.language.isoen-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleLicense plate detection and recognition algorithm for vehicle black box-
dc.typeArticle-
dc.contributor.affiliatedAuthorLim, Joonhong-
dc.identifier.doi10.1109/CACS.2017.8284273-
dc.identifier.scopusid2-s2.0-85050466768-
dc.identifier.bibliographicCitation2017 International Automatic Control Conference, CACS 2017, v.2017-November, pp.1 - 6-
dc.relation.isPartOf2017 International Automatic Control Conference, CACS 2017-
dc.citation.title2017 International Automatic Control Conference, CACS 2017-
dc.citation.volume2017-November-
dc.citation.startPage1-
dc.citation.endPage6-
dc.type.rimsART-
dc.type.docTypeConference Paper-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusAccidents-
dc.subject.keywordPlusAutomation-
dc.subject.keywordPlusEdge detection-
dc.subject.keywordPlusImage processing-
dc.subject.keywordPlusMotion compensation-
dc.subject.keywordPlusNearest neighbor search-
dc.subject.keywordPlusOptical character recognition-
dc.subject.keywordPlusProcess control-
dc.subject.keywordPlusSupport vector machines-
dc.subject.keywordPlusAccident investigation-
dc.subject.keywordPlusCharacter extraction-
dc.subject.keywordPlusK-nearest neighbor classifier-
dc.subject.keywordPlusK-nearest neighbors-
dc.subject.keywordPlusLicense plate detection-
dc.subject.keywordPlusLicense plate recognition systems-
dc.subject.keywordPlusRecognition algorithm-
dc.subject.keywordPlusVehicle black box-
dc.subject.keywordPlusLicense plates (automobile)-
dc.subject.keywordAuthorImage Processing-
dc.subject.keywordAuthork-nearest neighbor-
dc.subject.keywordAuthorLicense plate-
dc.subject.keywordAuthorSupport vector machine-
dc.subject.keywordAuthorVehicle Black Box-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/8284273-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE