Determining the optimal fuzzifier range for alpha-planes of general type-2 fuzzy sets
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kulkarni, Shreyas | - |
dc.contributor.author | Agrawal, Rishabh | - |
dc.contributor.author | Rhee, Frank chung hoon | - |
dc.date.accessioned | 2021-06-22T13:02:14Z | - |
dc.date.available | 2021-06-22T13:02:14Z | - |
dc.date.issued | 2018-07 | - |
dc.identifier.issn | 1098-7584 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/7898 | - |
dc.description.abstract | Type-2 fuzzy sets (T2 FSs) are capable of handling uncertainty more efficiently than type-1 fuzzy sets (T1 FSs). The fuzzifier parameter plays an important role in the final cluster partitions in fuzzy c-means (FCM), interval type-2 (IT2) FCM, general type-2 (GT2) FCM, and other fuzzy clustering algorithms. In general, fuzzifiers are chosen for a given dataset based on experience. In this paper, we adaptively compute suitable values for the range of the fuzzifier parameter for each α-plane of GT2 FSs for a given data set. The footprint of uncertainty (FOU) for each α-plane is obtained from the given data set using histogram based membership generation. This is iteratively processed to give the converged values of fuzzifier parameters for each α-plane of GT2 FSs. Experimental results for several data sets are given to validate the effectiveness of our proposed method. © 2018 IEEE. | - |
dc.format.extent | 8 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | - |
dc.title | Determining the optimal fuzzifier range for alpha-planes of general type-2 fuzzy sets | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1109/Fuzz-Ieee.2018.8491556 | - |
dc.identifier.scopusid | 2-s2.0-85060436704 | - |
dc.identifier.wosid | 000451248900115 | - |
dc.identifier.bibliographicCitation | IEEE International Conference on Fuzzy Systems, v.2018-July, pp 1 - 8 | - |
dc.citation.title | IEEE International Conference on Fuzzy Systems | - |
dc.citation.volume | 2018-July | - |
dc.citation.startPage | 1 | - |
dc.citation.endPage | 8 | - |
dc.type.docType | Conference Paper | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Artificial Intelligence | - |
dc.relation.journalWebOfScienceCategory | Engineering, Electrical & Electronic | - |
dc.subject.keywordPlus | C-MEANS | - |
dc.identifier.url | https://ieeexplore.ieee.org/document/8491556 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.